

LMS internal discussion

Multi-physical coupling in mechanics

Moderator: Laurent Guin

Speakers: Kostas Danas, Laurent Guin, Vignesh Kannan

Date and Time: September 25, 2025 (2 – 3 pm)

Venue: Amphi 104 (Pole Meca)

Abstract

In this internal seminar on multi-physical coupling in mechanics, Kostas Danas, Laurent Guin and Vignesh Kannan will cover different current topics such as magneto-mechanical couplings in magnetorheological elastomers (MREs), chemo-mechanical couplings in batteries and electro-mechanical couplings in ferroelectrics and magnetic shape-memory alloys.

Magnetorheological elastomers are composite materials that comprise ferromagnetic nano- and micro-particles embedded in a soft polymeric matrix. This gives rise to a coupled magneto-mechanical response at the macroscopic (order of millimeters and larger) scale when they are subjected to magneto-mechanical external stimuli. They find potential application in controlled pattern formation, soft sensor-actuators, haptic sensing devices.

From the lead-acid batteries of the early 1920s to today's lithium-ion batteries, the specific energy of rechargeable batteries has increased by a factor of seven, a game-changer for the electrification of numerous technologies. Fortuitously, mechanics happens to play an important role in some of the current battery research directions. We will cover two examples: the coupling between lithium diffusion and stress in silicon used as an electrode material and the problem of lithium dendrite growth associated with electrolyte fracture in solid-state batteries.

Exploring materials at short time scales and large stresses pose exciting new questions related to multiphysical coupling in mechanics. Under such conditions, engineering applications range from vibration damping to shock absorption and pulsed-power generation. We will discuss two problems: (1) the interplay between polarization switching and viscoelastic behavior of ferroelectric crystals, (2) open questions on the thermo-(magneto)-mechanical coupling in shape memory alloys at large loading rates.

Format

Each speaker will have 10 minutes for a presentation, followed by 5 minutes for questions. The last 10 - 15 minutes will be allocated for the lab to engage in a larger discussion about exciting new open questions in the field.