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|. Industrial context

ARIZE Project — Aeronautics Research and Industry new horiZons finite Elements software

* Started in 2021

* Funded by the DGAC

* Aims to achieve the environmental objectives set by the European Commission and the
French government through innovation

* Partnership between Safran, Onera, Armines, Mines Paris, and Transvalor

-
How does this thesis fit into this project?

One focus of the ARIZE project involves accelerating the computational resolution of
partial differential equations in mechanics, particularly in fracture mechanics. Safran's
current methods are all based on finite element methods.

—
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|.  Industrial context 2. Existing tools at Safran

What crack problems models are used at SAE?

0 Simple 1D, 2D, and 3D analytical solutions. Too canonical and therefore
not applicable for industrial cases.

Existing Tools at SAE

0 Analytical tools 0 5
e Semi-analytical tools ¢ + % T % 1‘ T T T ¢
e 3D crack problems with FEM : E—
0 "2.5D" crack problems with FEM < - -

h

VY vy RN

1+ 4 2 4 2 \1/4
KIZO"\/TT(I K, = o\ma b K1=6n ECIS%I’I qb+b Cosqb
2 ﬂ(1_2)3/2 E(k) .|a\a?sin? ¢ + b? cos? ¢
b

b
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Industrial context 2. Existing tools at Safran

What crack problems models are used at SAE?

9 Bueckner's superposition principle combined with weight functions.
Disadvantages: over simplified geometry and does not take into account
the impact of the presence of the crack on the structure's relaxation.

Existing Tools at SAE

0 Analytical tools
e Semi-analytical tools Applid
e 3D crack problems with FEM

0 "2.5D" crack problems with FEM

Opposite loading on the
crack lips

"

( (
= 5) K;(b) + ) Ki(o
K;(a) = 0 + K;(c)
K;(a) = K;(c)

K@= Wee(0).0@).ds,
Crack surface ~

Weight function
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Industrial context 2. Existing tools at Safran

What crack problems models are used at SAE?

e Classical finite element method. Disadvantage: very long set up (up to
several months), as well as for the calculation of crack propagation (up
to a few weeks).

Existing Tools at SAE

o Analytical tools

9 Semi-analytical tools

e 3D crack problems with FEM

Q "2.5D" crack problems with FEM

Supprimée pour confidentialité
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|.  Industrial context 2. Existing tools at Safran

What crack problems models are used at SAE?

Existing Tools at SAE @ = Q + G Use of the superposition principle as in eand finite
element method as in
o Analytical tools
. . o) ite loadi th
9 Semi-analytical tools - PP ek ||.2§ o

loads

e 3D crack problems with FEM
Q "2.5D" crack problems with FEM =

The SIF is computed by post-processing FEM solution
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|. Industrial context 3. Goals of the PhD

And my thesis?

Existing Tools at SAE

0 Analytical tools
%) Semi-analytical tools
3D crack problems with FEM
27| "2.5D" crack problems with FEM

Hypothesis of the framework

* LEFM (Linear Elastic Fracture Mechanics)
* |sotropic, homogeneous material

Final goal : speed up computation time for certain industrial study

cases under the asumptions mentionned above.
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[I. General scheme for solving crack problem using fast p’_
BEM
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General scheme for crack problem using fast BEM 1. Recall : BIE in elastostatics

Boundary integral equation for elastic solids

(u in () (t in ()
1 * 1

5t—7)u=<§uover5 Dt—g{u=<itover5
. 0 ow. . 0 ow.
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II.  General scheme for crack problem using fast BEM

Boundary integral equation for elastic solids

(U in () (t in Q)
St —Du = { - U s o, D't —Hu =
. 0 ow. . 0 ow.

Free space Green’s fundamental solution:

G(x,y) = (3—4\;)1+?®?}

S (x) =f G(x,y) o(y)dT,
S

a o
De(x) =p.v. f (V?G(x,y))T-f(y)dTy 16mu(1—v)

S Generalized normal derivative (“trace”)

n Y'u:=0-n= (Adivu)yn+ u(Vu + v'u) - n

Equilibrium equation (without volumic forces) and
Hooke's law :

dive = 6, Ojj = Cijkf auk/ax{;

S
oG = Lo [ V2 (r36) - far,
S
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General scheme for crack problem using fast BEM 2. Displacement discontinuity method

Extension to cracked solids...

Displacement discontinuity method

Hyrr¢pr + Dists — Hrsug = —t  (on )

1
Sssts — Dssus + Dgropr = Su (on S)

... And its interior representation formulas.

p=ut—u
\ J

Interior representation Y

g = DorPr + Dorits Crack Opening Displacement

oqg=0C:= (G(Dnrfpr) + G(Dnrus)) (o @
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II.  General scheme for crack problem using fast BEM

Main caracteristics of the BEM

* Only the boundary (3D surface — including the crack) is meshed : purely 2D éléments in 3D framework
* We describe each 2D element by a reference element and its polynomial interpolant (like in the FEM)
* The numerical difficulty occurs when integrating singular kernels

* Nystrom method : the quadrature nodes encode the unknown discrete values

@« B 4

n
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3. Numerical resolution by BEM

fast BEM

crack problem using

General scheme for

Main caracteristics of the BEM
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* We describe each 2D element by a reference element and its polynomial interpolant (like in the FEM)

integrating singular kernels

The numerical difficulty occurs when

Nystrom method : the quadrature nodes encode the unknown discrete values

Reference element

Physical element
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II.  General scheme for crack problem using fast BEM

Elementary integration on a reference element T,

(un)known function |—> singular kernel

x is far enough from t. (regular integration — Gauss-Legendre quadrature)
2) x is on T, (singular integration) 2> Enhanced Guiggiani's algorithm Klpl(x) = | Kx,y) - (p(y)dSy
Intermediate case : x is close to T, (nearly-singular integration) but not in 1 Te = integration element

source point

Integration element

11T 1 .

EEEEEE R Source point

T 1

s adiisee, 1

N e nE R Singular case
T T

Nearly-singular case

X X B XN

Regular case

lllustration on an elliptic crack surface

Safran Aircraft Engines - ENSTA - UMA - POEMS | 21/10/2025



General scheme for crack problem using fast BEM 5. Focus on enhanced Guiggiani’s algorithm (1/X)

Guiggiani (1992) direct algorithm for computing singular elementary integrals

Regularized part = 0(1) Remainder, analytically handled
| |

\ ! \
K@) _ K_l(e)} N {K_z @, K_l(e)}
P P P P

Core idea

KR 9):=p]@INDK(x,y) = {K(P, ) —

S- (0.1° (1.1
Mapping to reference element
y =1(¥)
\ (1.0°
51 S') (0 .0 |
ds, = J(¥)pdpd® dSy, = dy,dy, = pdpdf

Main goal : get the expression of the Laurent coefficients K_;(0) and K_,(6)
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General scheme for crack problem using fast BEM 5. Focus on enhanced Guiggiani’s algorithm (2/X)

Main goal : get the expression of the Laurent coefficients K_,(6) and K_,(6)
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General scheme for crack problem using fast BEM

5. Focus on enhanced Guiggiani's algorithm (3/X)

Main goal : get the expression of the Laurent coefficients K_,(6) and K_,(6)

Laurent coefficient

Laurent coefficient Laplace Au + f — O

Original hypersingular ga;_;:g - ?{(:??:i:’:x} -
kernel o

Laurent coefficient Laplace Au + f= O

Laplace Hua +— F — O
e N 1 T & Y
Orlgjnalkl;)rrrp‘::'slngular (1 — 3 F) - meo) moD Orlgjnalkl;):zlrslngular et {(r — = > =) - r2CD} - =l
Sy N G A rR D N Cap sy
H_2(8) Gl T Ca) ~ e CBI T HE—= CEY Arr il Crad - zeCED 11
K, 8

o D

oe e aplace A 0

—1 {3 (Z7(n) - u(0)) - ¥ (¥7) () : (u(0) @ u(9))

3 2 J(m)N(n) . . .
Originalkhypelrsingular 1 {(1_ #® f-) . n(x)} ) 41rHZT('?) ru(t‘))H 2”21'(71) . u(0)” NN (n D i rect 3 pproach , descn bed in
ernel A3 (\= 327’(17) “u(6) 1 . . -y - .
o TN Hy(n)uw)”{{ ( (7% (@) ) : (@) @ ue)) -0 Guiggiani's original article
4m |1 () - w(6)||

+ (Xr(n) -u(®) - (gf(n)-U(ﬁ’))) =V (In)(n) “(9)}1\’(77)*
K_.(6)

J(m)n(n) (YN (n) - u(8)) }}
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General scheme for crack problem using fast BEM 5. Focus on enhanced Guiggiani’s algorithm (4/X)

Main goal : get the expression of the Laurent coefficients K_,(6) and K_,(6)

Laurent coefficient

Laurent coefficient

Laplace Au + f— O

Original hypersingular ga;_;:g - ?{(:??:i:’:x} -
kernel

I (8D

Laurent coefficient Laplace Au + F= O Laurent coefficicmns

Laplace Su + F— O =

Original hypersingular
kernel

1 CF==l W a
Ll {(1—3r®#)  noo} nod Origminal hypersinealar

feermel Fmr= (L — 3¢ = ) - w=Cxd} - =D
oefficie aplace Ju+ 7= 0 L {3 (©rln) @) L@ 0: @O u0)
odginalypersinglar | L gy o0 nodagy | I )| 2|2rn )| _ Direct approach, described in
ernel A3 (\= 327’(17) “u(6) 1 . . . -y - .
i O, +M{{((J(n)n(n)gg@) ) (u®) 3 u®)) ) -n(o) Guiggiani's original article

Anll () - w(O)|

+ (2r(n) - u(9)) - (gr(n)-u(e))) — Y(Jn)(n) - U(G)}N(n)*
K_,(0
@ J(m)n(n) (TN (n) - u(9)) }}

Hypersingular elastostatics kernel : N (MyGx,y)) = MLT)?J 3y {1 =20 07+ (- na)l4+7 © na) =50 na)i @7}

+ 31/{(':q ‘Mg )Ny @ T + (g - Ny )T ®'ﬁ} +(1— 21»'){3(’.'q ‘N T @My + (N -1y
+ 1y ®'ﬁ} —(1—4v)n, ®ny]
(1.15)
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General scheme for crack problem using fast BEM 5. Focus on enhanced Guiggiani’s algorithm (5/X)

Main goal : get the expression of the Laurent coefficients K_,(6) and K_,(6)

Improvement of the Guiggiani’s direct approach from a numerical aspect

— 1; 2
K_,(0) = LI_I}(I)K (p,0)p 0

o K_,(6)
K_,(0) = })l_r}g} pK(p,0) — 5 9
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General scheme for crack problem using fast BEM 5. Focus on enhanced Guiggiani’s algorithm (6/X)

Main goal : get the expression of the Laurent coefficients K_,(6) and K_,(6)

Improvement of the Guiggiani’s direct approach from a numerical aspect

— 1; 2
K_,(0) = LI_I}(I)K (p,0)p o

o K_,(6)
K_,(0) = })1_13(1} pK(p,0) — 5 9

Hybrid approach (direct / Richardson) for the Guiggiani's method :
1 B cosf F0aY —
@ O=F kAWM, A = [pron - (G| A®) = bran - (

regular part of the kernel

cos6
sin6

) /4(6)

Richardson extrapolation Guiggiani algorithm
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General scheme for crack problem using fast BEM 5. Focus on enhanced Guiggiani’s algorithm (6/X)

Main goal : get the expression of the Laurent coefficients K_,(6) and K_,(6)

Improvement of the Guiggiani’s direct approach from a numerical aspect

— 1; 2
K_,(0) = LI_I}(I)K (p,0)p o

o K_,(6)
K_,(0) = })1_13(1} pK(p,0) — 5 9

Hybrid approach (direct / Richardson) for the Guiggiani's method :

L cos6 < cos6
® O =FGRAOWmIm,  A®) = [pron- (G )| A® = pran - (70)/4®)
regular part of the kernel
9] (@) K-1(8) = p™'[p°K (p,8) = K_2()] + O () s with

(b) K_1(68) = (tp) ™ [(tp)*K (tp, 0) — K_,(0)] + 0,

1
(b) — t(a) = |K-1(8) = T {tp(K(tp,0) — pK(p,6)) + (t — t=)K_5(6)} + pC_?)O(Pz)

and so on...' z o :
1(0) Richardson extrapolation Guiggiani algorithm
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General scheme for crack problem using fast BEM 6. H — matrices compression

Problem

BEM matrices are dense, non-
symetrical and non-definite-positive

FEM

- High storage requirement 0(n?)
- Long assembling O(n?) and solving

Asymptotically

Smooth kernels Clustering PACA algorithm
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

Smooth kernels PACA algorithm

Clustering

K(x,y) = K(r)

100

<
=

K(x,y)= o (ris)’ s €{1,2,3}

r—+o00

75

a|a|+|ﬁ|K(x y) 50 |
’ < — ||~ Ual+[Bl+s)
02,05 < (lal + BDCllx — yl|

Smoothness condition 25T

Va,

1 1 1
0.2 0.4 0.6 0.8 1.0
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically
Smooth kernels

PACA algorithm

Clustering

Lo

0.55

0.50

0.45 -

0.40
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

Smooth kernels PACA algorithm

Clustering

Safran Aircraft Engines - ENSTA - UMA - POEMS | 21/10/2025



General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

Smooth kernels PACA algorithm

Clustering
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6. H — matrices compression

General scheme for crack problem using fast BEM

PACA algorithm

Clustering

Asymptotically
Smooth kernels

and so on...
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II.  General scheme for crack problem using fast BEM

Absolute rank of all H —Matrices sub-blocks Relative rank of all H —Matrices sub-blocks
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

Smooth kernels PACA algorithm

Clustering

Admissible block B
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

PACA algorithm

Clustering

Smooth kernels

Admissible block B
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

PACA algorithm

Clustering

Smooth kernels

Admissible block B
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

PACA algorithm

Clustering

Smooth kernels

Admissible block B
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6. H — matrices compression

General scheme for crack problem using fast BEM

Asymptotically

PACA algorithm

Clustering

Smooth kernels

CO Cl RO == m_COdO > rank ].
d, 0
7 S—— ® 1 -
IO Rl - m_Cld]Tj > I’ank ]. (Cl: - Cl - do UI]CO)
! (di:=d; — colis]dy)
d;

Admissible block B
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

PACA algorithm

Clustering

Smooth kernels

_ 1
Co €1 R, = m—codg > rank 1
d, 0
[() e ® 1
’ R, = m_C1dI > rank 1 (¢;:= ¢ — dyg[j1]co)
! (dy:=d; —coli]dy)
and so on...
. d; 1
b ml Rr = m_crd??: > rank 1 (Cr: = i_ dr—l Ur]cr—l)
' (dr: = dr - Cr—l[ir]dr—l)

Admissible block B
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II.  General scheme for crack problem using fast BEM

AsymptOtlca“y C|ustering PACA algorithm

Smooth kernels

_ 1
Co €1 Ro=—cod) — > rank 1
| dy o
[ |e—, — ~ .
0 Rl - m_Cld{ — I’ank ]. (Cl: = Cl - dO [}1]C0)
1 (dy:=dy —colir]dy)
and so on...
. dy 1
ll Ly RT’ = _C?"d?T S — rank 1 (Cr: = E;. — d?’-l UT]Cr-l)
i (dr: = dr - Cr—l[ir]dr—l)
Error estimate »
. _ llerllr - lidillr B=B,.= ) R, > rankr
pacak I Bl k=1

Admissible block B
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General scheme for crack problem using fast BEM 6. H — matrices compression

Asymptotically

Smooth kernels PACA algorithm

Clustering

« blind » matrix
exploration & compression

input output
PACA » Rank r block A - BT

h 4

Unassembled block

Matrix-vector

GMRES < multipication < Doing that for each
sub-block

algorithm
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[II. Integration to lifespan analysis
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lIl.  Integration to lifespan analysis . Computing the stress intensity factor

What does it mean to « solve » a crack problem at Safran 7

Irwin criterion (1957) Paris’ law — fatigue approach (1963)

The piece breaks & K > K_

102 -
- 1 cycle
régime erime B ()/dadeC{ﬁK) A | |

103 max? Umax -

104 |

A

105

AO,AK

régime C

da/dN [mm/cycle]

106 |

107 | LTemps

Ke
r

10°8
10 100
AK [MPa.m 1/2 ]
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Integration to lifespan analysis

Computing the stress intensity

What does it mean to « solve » a crack problem at Safran 7

Irwin criterion (1957)

Paris’ law — fatigue approach (1963)

da/dN [mm/cycle]

104 |

105 |

106 |

1077 |

10-8

The piece breaks © K > K_

factor

AO,AK

régime A régime B () /da.-"sz CEaxn
régime C
K¢
10 100

AK [MPa.m 1/2 ]
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lIl.  Integration to lifespan analysis

Computing the stress intensity factor

°O
Direct kinematic extrapolation Q o/
p 4
a | /'/:\ )
»Crack_ulpé Z =
u(d) = KVdf(0) + 0(d)

Williams' asymptotic expansion

Theorical SIF

I rm~I1r-

A1 O
vurriericdl oir
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lIl.  Integration to lifespan analysis : Computing the stress intensity factor

Quarter-node éléments (a.k.a Barsoum elements)

Theorical SIF

d 1 d(1
¢(y)=\/£ 2¢2—5¢3+J;(§¢3—¢2)
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lIl.  Integration to lifespan analysis . Computing the stress intensity factor

Weighting function

Change of variable : seeking a priori the COD ¢ as
d=w -

_ Crack tiip/ X
u(d) = KVdf(6) + 0(d)

Williams' asymptotic expansion

* w must be asymptotically as the square root of the Q
crack front distance: o

w ~ Vd
y—=crack front

Consequences:
* New weighted kernels

K,=w-K

precomputed » COD

Crack surface

« Better SIF approximation
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lIl.  Integration to lifespan analysis . Computing the stress intensity factor

Weighting function

u(d) = K\/d f(9)+0(d)

Williams' asymptotic expansion

. seeking a priori the COD ¢ as
d=w -

Change of variable

Theorical SIF

% = e |2
a5 41 —-v) ¢"’
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lIl.  Integration to lifespan analysis 2. Integration to global pipeline

Number of cycles
until fracture =

Inputs data lifespan

* Geometry of the piece
* Initial crack (small)
* Boundary conditions N = SIF computation SIF(s) Break ?

(loading, '

displacement)

* Media elastic
properties

yes

e BEM model * Fracture criterion

no

Crack propagation
N=N+1 : -
* Propagation law(s) (Paris,

Willenborg, etc...)
* Direction of propagation

Update / evolve

* New crack (taller)
* New geometry (remeshing)
* New boundary conditions
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[V. Numerical examples / validation
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IV.  Numerical examples 1. Elliptic crack in infinite media

@ Makie = O X @ Makie = (] X
=

Relative error in Crack Opening Displacement between the theoretical and numerical solution g Crack Opening Displacement for crack in infinite media g

e [+

0.60 ‘g 0.60 4 E

[+ =

5 0.00010 £

Ll c

02 S £

0.55 2 0.55 4 5

= 8

: S

Z 8

0.50 - fg 0.50 - 5

© 0.00005 5

0.1 § 8

k! &

0.45 - % | 045- ]

a 2

2 5

= Q

2 o

0.40 - & 0.40 - 5

T T T T T 0.0 = T T T T T 0.00000 ®©

0.3 0.4 0.5 0.6 0.7 <] 0.3 0.4 0.5 0.6 0.7 o
&)

P Makie = o X

Theorical Crack Opening Displacement in infinite media g

o

0.60 - £

o

0.00010 €

£

. £

relative error 055 4 :

[

E

Q

8

g

0.50 =

0.00005 o

£

c

[

o

0.45 4 o

-k

&

(&)

g

0.40 - £

T T T T T 0.00000 2

0.3 0.4 0.5 0.6 0.7 =
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IV.  Numerical examples

(symmetrical loading)

1. Elliptic crack in infinite media

0.5+

0.0

-0.54

-0.0025~

— Numerical SIFs
— Theorical SIFs

50

100

100

100

Last iteration = fatigue lifespan
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Numerical examples 2. Elliptic crack in cube under mixed boundary conditions

Crack opening displacement

Applied loads q

Mesh

External boundary
displacement

Zero displacement ; :
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Numerical examples 2. Elliptic crack in cube under mixed boundary conditions

Crack opening displacement

Applied loads q

Mesh

External boundary
displacement

Zero displacement ; :
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IV.  Numerical examples 3. Presentation of CrackFastBEM

Features : under development, but the goals are to deal with :
* 3D crack configurations herited from a BEM mesh

Library under development in *  Mixed or sim.ple.: b'OL.mdary. conditions (Dirichlet + Neumann)
* Crack in infinite solid

* Julia package for fatigue lifespan estimation for a * Crackin finite solid

3D general crack configuration : *  Surface breaking cracks
CrackFastBEM. j1 * SIF computation : 1) naive approach, 2) with weighting function

*  Compatible with the Bueckner's superposition principle
*  « user-friendly » API

Inti.jl HMatrices.jl

Julia library for solving boundary and volume integral Julia library for assembling hierarchical matrices.
INtlI equations using Nystrom discretization method

2500 -

] 5000 -

7500 -

- 10000 |

6.00%10° 2.00x10° 1.20x10°

o
w
=
S
I
fur
[

Luiz Faria, UMA, POEMS, ENSTA Paris
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\VA Conclusion

Forthcoming goals...

* FEM / BEM coupling

* Industrialization with Safran : FEM model = Coupling with BEM - Bueckner superposition
* Thermal gradient : thermal dilatation term

e T & Tz stress

Thank you for your attention
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