Fatigue lifetime analysis of general 3D crack configurations using \mathcal{H} -matrix accelerated boundary element method

PhD student: Adrien VET1,2

Supervisors: Marc Bonnet², Luiz Faria², Raùl de Moura Pinho¹

¹Safran Aircraft Engines (Villaroche, France)

²POEMs, UMA, ENSTA (Palaiseau, France)

Contents

- I. Industriel context
- II. General scheme for solving crack problem using fast BEM
- III. Integration to fatigue lifespan analysis
- IV. Numerical examples
- V. Conclusion PhD to be continued...

I. Industrial context

- i. Introduction
- ii. Established tools at Safran
- iii. Goals of the PhD
- iv. Link betwen lifespan and crack propagation

I. Industrial context 1. Introduction

ARIZE Project – <u>A</u>eronautics <u>R</u>esearch and <u>I</u>ndustry new hori<u>Z</u>ons finite <u>E</u>lements software

- Started in 2021
- Funded by the DGAC
- Aims to achieve the environmental objectives set by the European Commission and the French government through innovation
- Partnership between <u>Safran</u>, Onera, Armines, Mines Paris, and Transvalor

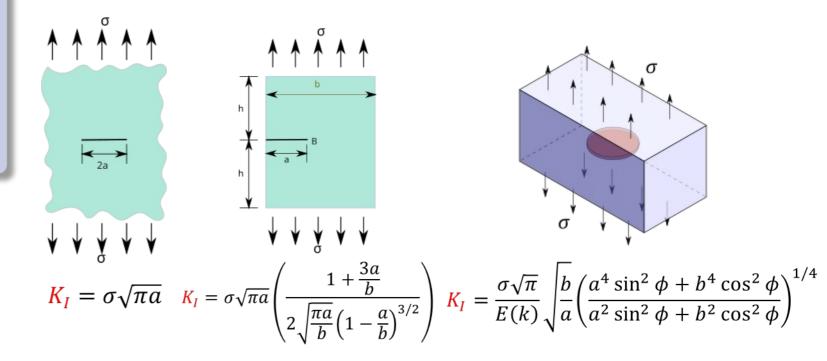
How does this thesis fit into this project?

One focus of the ARIZE project involves accelerating the computational resolution of partial differential equations in mechanics, particularly in fracture mechanics. Safran's current methods are all based on finite element methods.

Existing Tools at SAE

- 1 Analytical tools
- 2 Semi-analytical tools
- 3D crack problems with FEM
- 4 "2.5D" crack problems with FEM

Simple 1D, 2D, and 3D analytical solutions. Too canonical and therefore not applicable for industrial cases.

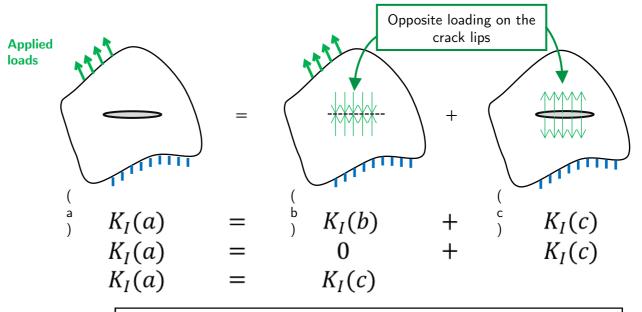


Existing Tools at SAE

- 1 Analytical tools
- 2 Semi-analytical tools
- 3D crack problems with FEM
- 4 "2.5D" crack problems with FEM

Bueckner's superposition principle combined with weight functions.

Disadvantages: over simplified geometry and does not take into account the impact of the presence of the crack on the structure's relaxation.



$$K_I(\mathbf{Q}) = \iint_{\text{Crack surface}} \underbrace{\mathbf{W}_{\mathbf{Q}\mathbf{Q}'}(\mathbf{Q},\mathbf{Q}')}_{\text{Weight function}} . \sigma(\mathbf{Q}'). dS_{\mathbf{Q}'}$$

Existing Tools at SAE

- 1 Analytical tools
- 2 Semi-analytical tools
- 3D crack problems with FEM
- 4 "2.5D" crack problems with FEM

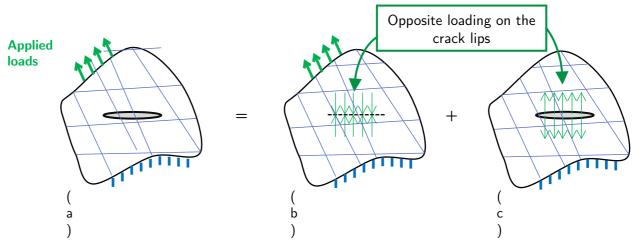
Classical finite element method. Disadvantage: very long set up (up to several months), as well as for the calculation of crack propagation (up to a few weeks).

Supprimée pour confidentialité

Existing Tools at SAE

- 1 Analytical tools
- 2 Semi-analytical tools
- 3D crack problems with FEM
- 4 "2.5D" crack problems with FEM

= 2 + 3. Use of the superposition principle as in 2 and finite element method as in 3.



The SIF is computed by **post-processing** FEM solution

And my thesis?

Existing Tools at SAE

- 1 Analytical tools
- 2 Semi-analytical tools
- 3D crack problems with FEM
- 4 "2.5D" crack problems with FEM

My thesis: solving 3D crack problems (as 3 and 4) but using the BEM accepting several hypothesis.

Hypothesis of the framework

- LEFM (<u>Linear Elastic Fracture Mechanics</u>)
- Isotropic, homogeneous material

<u>Final goal</u> : speed up computation time for certain industrial study cases under the asumptions mentionned above.

II. General scheme for solving crack problem using fast BEM

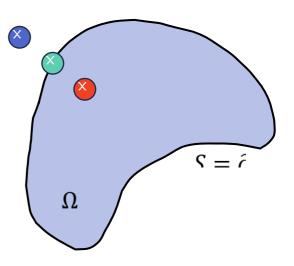
- i. Recall: Boundary Integral Equation in Elastostatics
- ii. Displacement Discontinuity Method
- iii. Numerical resolution by the Boundary Element Method
- iv. Computation of (singular) integrals
- V. Focus on enhanced Guiggiani's algorithm
- Vi. ℋ− matrices compression

Boundary integral equation for elastic solids

$$St - Du = \begin{cases} \frac{u}{1} & \text{in } \Omega \\ \frac{1}{2}u & \text{over } S \\ 0 & \text{ow.} \end{cases} \qquad \mathcal{D}^*t - \mathcal{H}u = \begin{cases} \frac{t}{1} & \text{in } \Omega \\ \frac{1}{2}t & \text{over } S \\ 0 & \text{ow.} \end{cases}$$

Ш.

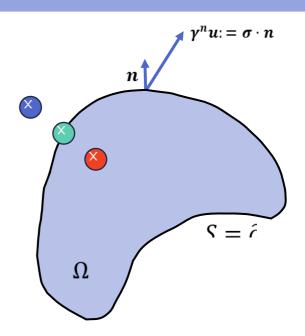
$$\mathcal{D}^*oldsymbol{t} - \mathcal{H}oldsymbol{u} = egin{cases} oldsymbol{t} & ext{in } oldsymbol{\Omega} \ oldsymbol{1} & ext{t over } oldsymbol{S} \ oldsymbol{0} & ext{ow}. \end{cases}$$



Boundary integral equation for elastic solids

$$\mathcal{S}oldsymbol{t} - \mathcal{D}oldsymbol{u} = egin{cases} oldsymbol{u} & ext{in } oldsymbol{\Omega} \ oldsymbol{1} & oldsymbol{u}_{ au} & oldsymbol{v}^*oldsymbol{t} - \mathcal{H}oldsymbol{u} = egin{cases} oldsymbol{t} & ext{in } oldsymbol{\Omega} \ oldsymbol{1} & ext{over } \mathcal{S} \ oldsymbol{0} & ext{ow}. \end{cases}$$

$$^*oldsymbol{t} - \mathcal{H}oldsymbol{u} = egin{cases} oldsymbol{t} & ext{in } \Omega \ rac{1}{2}oldsymbol{t} & ext{over } \Omega \ 0 & ext{ow}. \end{cases}$$



$$S\varphi(x) = \int_{S} G(x,y) \cdot \varphi(y) dT_{y}$$

$$\mathcal{D}\varphi(x) = \mathbf{p.\,v.} \int_{S} \left(\gamma_{y}^{n} G(x, y) \right)^{T} \cdot f(y) dT_{y}$$

$$\mathcal{D}^* \varphi(x) = \mathbf{p. v.} \int_{S} \gamma_x^n G(x, y) \cdot f(y) dT_y$$

$$\mathcal{H}\boldsymbol{\varphi}(x) = \mathbf{f.p.} \int_{S}^{S} \gamma_{x}^{n} \left(\gamma_{y}^{n} G(x, y) \right)^{T} \cdot f(y) dT_{y}$$

Free space Green's fundamental solution:

$$G(x,y) = \frac{1}{16\pi\mu(1-\nu)r} \left\{ (3-4\nu) \prod_{n=1}^{\infty} + \hat{r} \otimes \hat{r} \right\}$$

Generalized normal derivative ("trace")

$$\gamma^n u := \boldsymbol{\sigma} \cdot \boldsymbol{n} = (\lambda \operatorname{div} \boldsymbol{u}) \boldsymbol{n} + \mu (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}) \cdot \boldsymbol{n}$$

Equilibrium equation (without volumic forces) and Hooke's law:

$$div \boldsymbol{\sigma} = \vec{\mathbf{0}}, \qquad \sigma_{ij} = C_{ijk\ell} \partial u_k / \partial x_\ell$$

II. G

Extension to cracked solids...

Displacement discontinuity method

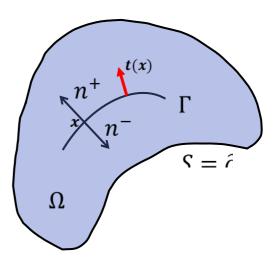
$$\begin{cases} \mathbf{\mathcal{H}}_{\Gamma\Gamma} \boldsymbol{\phi}_{\Gamma} + \mathcal{D}_{\Gamma S}^{*} \boldsymbol{t}_{S} - \mathcal{H}_{\Gamma S} \boldsymbol{u}_{S} = -\boldsymbol{t} & \text{(on } \Gamma) \\ \mathbf{\mathcal{S}}_{SS} \boldsymbol{t}_{S} - \mathbf{\mathcal{D}}_{SS} \boldsymbol{u}_{S} + \mathcal{D}_{S\Gamma} \boldsymbol{\phi}_{\Gamma} = \frac{1}{2} \boldsymbol{u} & \text{(on } S) \end{cases}$$

... And its interior representation formulas.

Interior representation

$$u_{\Omega} = \mathcal{D}_{\Omega\Gamma} \phi_{\Gamma} + \mathcal{D}_{\Omega\Gamma} u_{S}$$

$$\sigma_{\Omega} = \mathbf{C} :: \left(\epsilon (\mathcal{D}_{\Omega\Gamma} \phi_{\Gamma}) + \epsilon (\mathcal{D}_{\Omega\Gamma} u_{S}) \right)$$
(on Ω)



$$\phi = u^+ - u^-$$

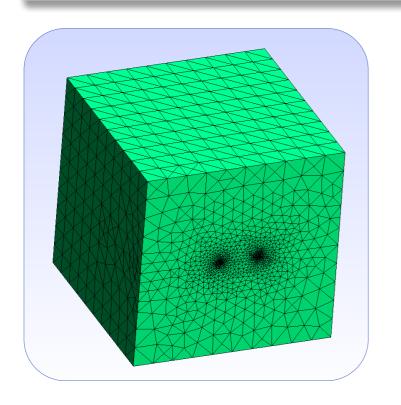
Crack Opening Displacement

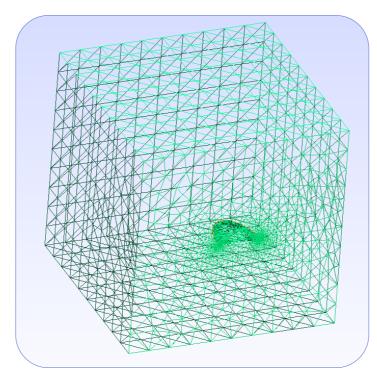
Main caracteristics of the BEM

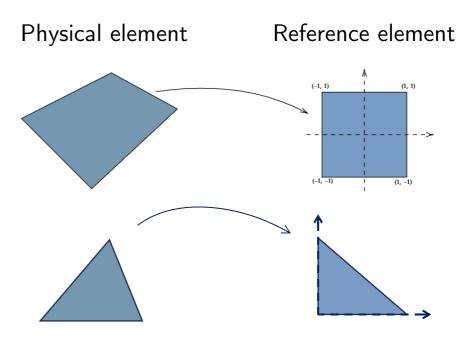
- Only the boundary (3D surface including the crack) is meshed: purely 2D éléments in 3D framework
- We describe each 2D element by a reference element and its polynomial interpolant (like in the FEM)
- The numerical difficulty occurs when integrating singular kernels
- Nyström method : the quadrature nodes encode the unknown discrete values

Main caracteristics of the BEM

- Only the boundary (3D surface including the crack) is meshed: purely 2D éléments in 3D framework
- We describe each 2D element by a reference element and its polynomial interpolant (like in the FEM)
- The numerical difficulty occurs when integrating singular kernels
- Nyström method : the quadrature nodes encode the unknown discrete values

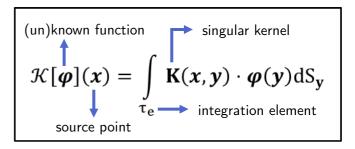






Elementary integration on a reference element $\boldsymbol{\tau}_{e}$

- 1) x is far enough from τ_e (regular integration Gauss-Legendre quadrature)
- 2) x is on τ_e (singular integration) \rightarrow Enhanced Guiggiani's algorithm
- 3) Intermediate case : x is close to $\tau_{\rm e}$ (nearly-singular integration) but not in



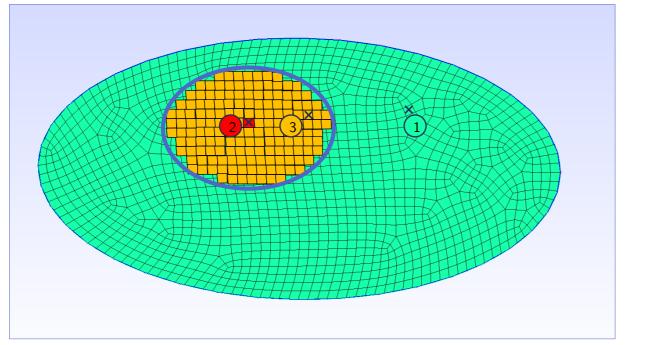


Illustration on an elliptic crack surface

Integration element

Source point

Singular case

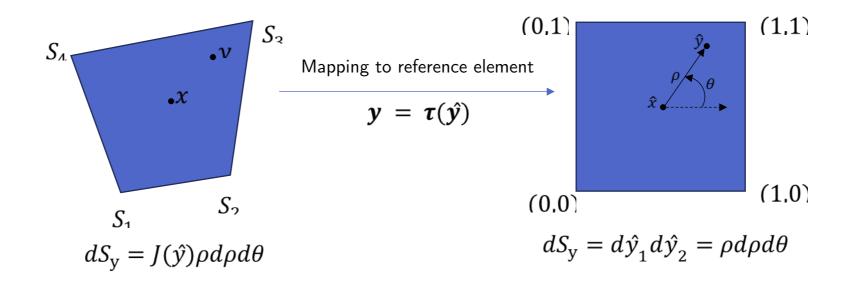
Nearly-singular case

Regular case

II. (

Guiggiani (1992) direct algorithm for computing singular elementary integrals

Core idea $K(\hat{\mathbf{x}}, \hat{\mathbf{y}}) := \rho J(\hat{\mathbf{y}}) N(\hat{\mathbf{y}}) K(x, y) = \left\{ K(\rho, \theta) - \frac{K_{-2}(\theta)}{\rho^2} - \frac{K_{-1}(\theta)}{\rho} \right\} + \left\{ \frac{K_{-2}(\theta)}{\rho^2} + \frac{K_{-1}(\theta)}{\rho} \right\}$ Remainder, analytically handled



Main goal: get the expression of the Laurent coefficients $K_{-1}(\theta)$ and $K_{-2}(\theta)$

11.

Main goal: get the expression of the Laurent coefficients $K_{-1}(\theta)$ and $K_{-2}(\theta)$

Main goal: get the expression of the Laurent coefficients $K_{-1}(\theta)$ and $K_{-2}(\theta)$

		Laurent coefficient	Laplace $\Delta u + f = 0$
Laurent coefficient		Original hypersingular	Laplace $\Delta u + f = 0$ $\frac{1}{4\pi r^3} \{ (\underline{I} - 3r \otimes r) \cdot n(x) \} \cdot n(y)$
		kernel $K_{-2}(\theta)$	4mrs ((2 5 5 7 m) (3) 11 (3) 11 (4) 11 (2) 11 (4) 1
		K ₋₁ (0)	4# V(1) - u(0)
Original hypersingular		Laurent coefficient	Laplace $\Delta u + f = 0$
		Original hypersingular kernel	$\frac{1}{4\pi r^3} \left\{ \left(\underline{\underline{I}} - 3r^2 \otimes r^2 \right) \cdot n(x) \right\} \cdot n(y)$
		$K_{-2}(\theta)$	$\frac{J(\eta)N(\eta)}{4\pi J(\eta)\cdot u(\boldsymbol{\theta}) }$
kernel		$K_{-1}(\theta)$	
Laurent coefficient	Laplace $\Delta u + f = 0$	Laurent coefficient	Laplace $\Delta u + f = 0$
Original hypersingular kernel	$\frac{1}{4\pi r^3} \left\{ \left(\underline{\underline{I}} - 3\hat{r} \otimes \hat{r} \right) \cdot n(x) \right\} \cdot n(y)$	Original hypersingular kernel	$\frac{1}{4\pi r^3} \{ \left(\underline{I} - 3\hat{r} \otimes \hat{r} \right) \cdot n(x) \} \cdot n(y)$
$K_{-2}(\theta)$	$\frac{J(\eta)N(\eta)}{4\pi J(\eta)\cdot u(\theta) }$	$K_{-2}(\theta)$	$\frac{J(\eta)N(\eta)}{4\pi \boldsymbol{J}(\boldsymbol{\eta})\cdot\boldsymbol{u}(\boldsymbol{\theta}) }$
$K_{-1}(\theta)$		$K_{-1}(\theta)$	
Laurent coefficient	Laplace $\Delta u + f = 0$	$-1 \qquad \int 3\left(\underline{\nabla}\tau(\eta) \cdot \mathbf{u}(\theta)\right) \cdot \underline{\underline{\nabla}}\left(\underline{\nabla}\tau\right)(\eta) : \left(\mathbf{u}(\theta) \otimes \mathbf{u}(\theta)\right) \Big _{I(x) \setminus V(x)}$	
Original hypersingular kernel	$\frac{1}{4\pi r^3} \left\{ \left(\underline{\underline{I}} - 3\hat{r} \otimes \hat{r} \right) \cdot n(x) \right\} \cdot n(y)$	$\frac{-1}{4\pi \left \left \underline{\underline{\nabla}} \tau(\eta) \cdot \mathbf{u}(\theta) \right \right ^3} \left\{ \frac{3 \left(\underline{\underline{\nabla}} \tau(\eta) \cdot \mathbf{u}(\theta) \right) \cdot \underline{\underline{\nabla}} \left(\underline{\underline{\nabla}} \tau \right) (\eta) : (\mathbf{u}(\theta) \otimes \mathbf{u}(\theta))}{2 \left \left \underline{\underline{\nabla}} \tau(\eta) \cdot \mathbf{u}(\theta) \right \right ^2} J(\eta) N(\eta) \right.$	
	THI (-	$3\underline{\underline{\nabla}}\tau(\eta)\cdot\mathbf{u}(\theta)$) $ \int \int \left(\int_{I(n)} \mathbf{r}(n) \frac{1}{\nabla_{i}} \left(\nabla_{i} \nabla_{j} \right) \left(\mathbf{r}(n) \cdot \left(\mathbf{r}(\theta) \otimes \mathbf{r}(\theta) \right) \right) \cdot \mathbf{r}(n) \right) $
$K_{-2}(\theta)$	$\frac{J(\eta)N(\eta)}{4\pi \boldsymbol{J}(\boldsymbol{\eta})\cdot\boldsymbol{u}(\boldsymbol{\theta}) }$	$+ \frac{3\underline{\Sigma}\tau(\eta) \cdot \mathbf{u}(\theta)}{\left \left \underline{\Sigma}\tau(\eta) \cdot \mathbf{u}(\theta)\right \right ^2} \left\{ \left\{ \left(\left(J(\eta)\mathbf{n}(\eta)\frac{1}{2}\underline{\Sigma}\left(\underline{\Sigma}\tau\right)(\eta) : (\mathbf{u}(\theta) \otimes \mathbf{u}(\theta))\right) \cdot \mathbf{n}(\eta) \right. \right. \right.$	
$K_{-1}(\theta)$	() !!	$+ \left(\underline{\nabla} \tau(\eta) \cdot \mathbf{u}(\theta) \right) \cdot \left(\underline{\nabla} \tau(\eta) \cdot \mathbf{u}(\theta) \right) - \underline{\nabla} (J\mathbf{n})(\eta) \cdot \mathbf{u}(\theta) \right\} N(\eta) - J(\eta) \mathbf{n}(\eta) \left(\underline{\nabla} N(\eta) \cdot \mathbf{u}(\theta) \right) \right\}$	

Direct approach, described in Guiggiani's original article

		Laurent coefficient	Laplace $\Delta u + f = 0$
Laurent coefficient		Original hypersingular kernel	$\frac{1}{4\pi r^3} \{ (\underline{t} - 3r \otimes r) \cdot n(x) \} \cdot n(y)$
		K ₋₂ (9)	$\frac{J(\eta)N(\eta)}{4\pi J(\eta)\cdot u(\theta) }$
		K_1(0)	
Original hypersingular kernel		Laurent coefficient	Laplace $\Delta u + f = 0$
		Original hypersingular kernel	$\frac{1}{4\pi r^3} \left\{ \left(\underline{I} - 3\hat{r} \otimes \hat{r} \right) \cdot n(x) \right\} \cdot n(y)$
		$K_{-2}(\theta)$	$\frac{J(\eta)N(\eta)}{4\pi \boldsymbol{J}(\boldsymbol{\eta})\cdot\boldsymbol{u}(\boldsymbol{\theta}) }$
		$K_{-1}(\theta)$	
Laurent coefficient	Laplace $\Delta u + f = 0$	Laurent coefficient	Laplace $\Delta u + f = 0$
Original hypersingular kernel	$\frac{1}{4\pi r^3} \left\{ \left(\underline{\underline{I}} - 3\hat{r} \otimes \hat{r} \right) \cdot n(x) \right\} \cdot n(y)$	Original hypersingular kernel	$\frac{1}{4\pi r^3} \left\{ \left(\underline{I} - 3\hat{r} \otimes \hat{r} \right) \cdot n(x) \right\} \cdot n(y)$
$K_{-2}(\theta)$	$\frac{J(\eta)N(\eta)}{4\pi J(\eta)\cdot u(\theta) }$	$K_{-2}(\theta)$	$\frac{J(\eta)N(\eta)}{4\pi \boldsymbol{J}(\boldsymbol{\eta})\cdot\boldsymbol{u}(\boldsymbol{\theta}) }$
$K_{-1}(\theta)$		$K_{-1}(\theta)$	
Laurent coefficient	Laplace $\Delta u + f = 0$	$\frac{-1}{4\pi \left \left \underline{\underline{\nabla}} \tau(\eta) \cdot \mathbf{u}(\theta) \right \right ^3} \left\{ \frac{3 \left(\underline{\underline{\nabla}} \tau(\eta) \cdot \mathbf{u}(\theta) \right) \cdot \underline{\underline{\nabla}} \left(\underline{\underline{\nabla}} \tau\right) (\eta) : (\mathbf{u}(\theta) \otimes \mathbf{u}(\theta))}{2 \left \left \underline{\underline{\nabla}} \tau(\eta) \cdot \mathbf{u}(\theta) \right \right ^2} J(\eta) N(\eta) \right.$	
Original hypersingular kernel	$\frac{1}{4\pi r^3} \left\{ \left(\underline{I} - 3\hat{r} \otimes \hat{r} \right) \cdot n(x) \right\} \cdot n(y)$		
Kerriei	$4\pi r^3 = -7$	$3\underline{\nabla}\tau(\eta)\cdot\mathbf{u}(\theta)$	$\int \left\{ \left($
$K_{-2}(\theta)$	$\frac{J(\eta)N(\eta)}{4\pi J(\boldsymbol{\eta})\cdot\boldsymbol{u}(\boldsymbol{\theta}) }$	$+ \frac{3\underline{\nabla}\tau(\eta) \cdot \mathbf{u}(\theta)}{\left\ \underline{\nabla}\tau(\eta) \cdot \mathbf{u}(\theta)\right\ ^{2}} \left\{ \left\{ \left(\left(J(\eta)\mathbf{n}(\eta) \frac{1}{2}\underline{\nabla}\left(\underline{\nabla}\tau\right)(\eta) : (\mathbf{u}(\theta) \otimes \mathbf{u}(\theta)) \right) \cdot \mathbf{n}(\eta) + \left(\underline{\nabla}\tau(\eta) \cdot \mathbf{u}(\theta)\right) \cdot \left(\underline{\nabla}\tau(\eta) \cdot \mathbf{u}(\theta)\right) \right\} - \underline{\nabla}(J\mathbf{n})(\eta) \cdot \mathbf{u}(\theta) \right\} N(\eta) - $	
$K_{-1}(\theta)$	15.32		
		$J(\eta)\mathbf{n}(\eta)\left(\underline{ abla}N(\eta)\cdot\mathbf{u}(heta) ight)\Bigg\}\Bigg\}$	
	<u> </u>	<u>L</u>	

Direct approach, described in Guiggiani's original article

Hypersingular elastostatics kernel: $\gamma_{1,x} (\gamma_{1,y} G(\mathbf{x}, \mathbf{y}))^T = \frac{\mu}{4\pi (1-\nu)r^3} \left[3\hat{r} \cdot n_y \left\{ (1-2\nu)n_x \otimes \hat{r} + \nu \left((\hat{r} \cdot n_x)\mathbf{I} + \hat{r} \otimes n_x \right) - 5(\hat{r} \cdot n_x)\hat{r} \otimes \hat{r} \right\}$

 $+3\nu\Big\{(\hat{r}\cdot n_x)n_y\otimes\hat{r}+(n_x\cdot n_y)\hat{r}\otimes\hat{r}\Big\}+(1-2\nu)\Big\{3(\hat{r}\cdot n_x)\hat{r}\otimes n_y+(n_x\cdot n_y)\mathbf{I}$ $+n_y\otimes\hat{r}\Big\}-(1-4\nu)n_x\otimes n_y\Big]$ (1.15)

Main goal: get the expression of the Laurent coefficients $K_{-1}(\theta)$ and $K_{-2}(\theta)$

Improvement of the Guiggiani's direct approach from a numerical aspect

$$K_{-2}(\theta) = \lim_{\rho \to 0} K(\rho, \theta) \rho^2$$

$$K_{-2}(\theta) = \lim_{\rho \to 0} K(\rho, \theta) \rho^{2}$$

$$K_{-1}(\theta) = \lim_{\rho \to 0} \left\{ \rho K(\rho, \theta) - \frac{K_{-2}(\theta)}{\rho} \right\}$$
2

Main goal: get the expression of the Laurent coefficients $K_{-1}(\theta)$ and $K_{-2}(\theta)$

Improvement of the Guiggiani's direct approach from a numerical aspect

$$K_{-2}(\theta) = \lim_{\rho \to 0} K(\rho, \theta) \rho^2$$

$$K_{-2}(\theta) = \lim_{\rho \to 0} K(\rho, \theta) \rho^{2}$$

$$K_{-1}(\theta) = \lim_{\rho \to 0} \left\{ \rho K(\rho, \theta) - \frac{K_{-2}(\theta)}{\rho} \right\}$$
2

Hybrid approach (direct / Richardson) for the Guiggiani's method :

1
$$K_{-2}(\theta) = \frac{1}{A^3(\theta)} \hat{K}(\hat{A}(\theta)) N(\eta) J(\eta), \qquad A(\theta) = \|\mathbf{D}\boldsymbol{\tau}(\boldsymbol{\eta}) \cdot \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}\|, \qquad \hat{A}(\theta) = \mathbf{D}\boldsymbol{\tau}(\boldsymbol{\eta}) \cdot \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} / A(\theta)$$

regular part of the kernel

Richardson extrapolation

Main goal: get the expression of the Laurent coefficients $K_{-1}(\theta)$ and $K_{-2}(\theta)$

Improvement of the Guiggiani's direct approach from a numerical aspect

$$K_{-2}(\theta) = \lim_{\rho \to 0} K(\rho, \theta) \rho^2$$

$$K_{-2}(\theta) = \lim_{\rho \to 0} K(\rho, \theta) \rho^{2}$$

$$K_{-1}(\theta) = \lim_{\rho \to 0} \left\{ \rho K(\rho, \theta) - \frac{K_{-2}(\theta)}{\rho} \right\}$$
2

Hybrid approach (direct / Richardson) for the Guiggiani's method :

1
$$K_{-2}(\theta) = \frac{1}{A^3(\theta)} \hat{K}(\hat{A}(\theta)) N(\eta) J(\eta), \qquad A(\theta) = \| \mathbf{D} \boldsymbol{\tau}(\boldsymbol{\eta}) \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \|, \qquad \hat{A}(\theta) = \mathbf{D} \boldsymbol{\tau}(\boldsymbol{\eta}) \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} / A(\theta)$$

regular part of the kernel

$$(\boldsymbol{a}) \ K_{-1}(\theta) = \rho^{-1} [\rho^2 K(\rho, \theta) - K_{-2}(\theta)] + \mathcal{O}(\rho)$$
 same with $t\rho$ instead of ρ
$$(\boldsymbol{b}) \ K_{-1}(\theta) = (t\rho)^{-1} [(t\rho)^2 K(t\rho, \theta) - K_{-2}(\theta)] + \mathcal{O}(\rho)$$
 same with $t\rho$ instead of ρ
$$(\boldsymbol{b}) - t(\boldsymbol{a}) \Rightarrow K_{-1}(\theta) = \frac{1}{1-t} \{t\rho(K(t\rho, \theta) - \rho K(\rho, \theta)) + (t-t^{-1})K_{-2}(\theta)\} + \mathcal{O}(\rho^2)$$
 and so on...
$$\widetilde{K}_{-1}(\theta)$$
 Richardson extrapolation Guigg

Problem

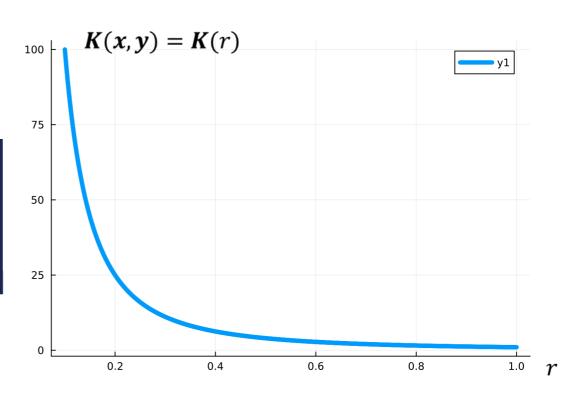
BEM matrices are dense, nonsymetrical and non-definite-positive

	+	_
BEM	Surface mesh, very less dofs	Dense matrices, non- symetrical
FEM	Sparse matrices, symetrical and semi-definite-positive	Huge number of dofs

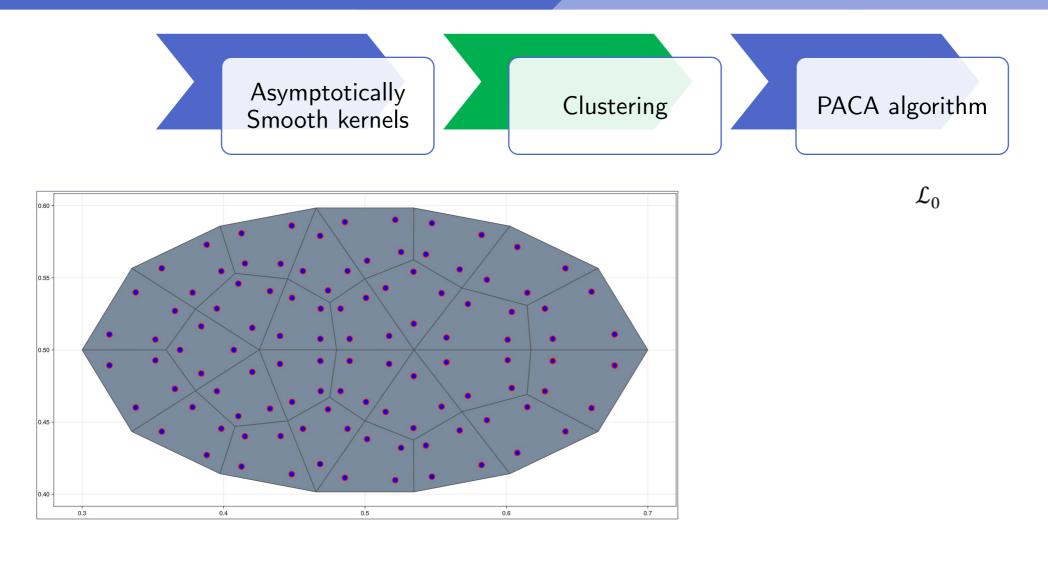
- **High storage** requirement $O(n^2)$
- Long assembling $O(n^2)$ and solving

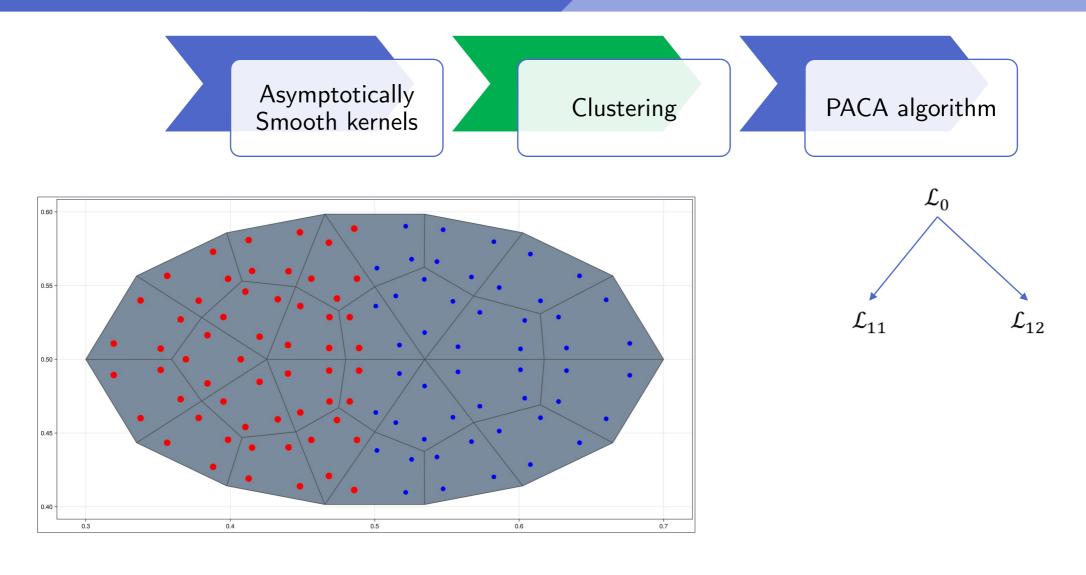
$$K(x,y) = \underset{r \to +\infty}{o} \left(\frac{1}{r^s}\right), \quad s \in \{1,2,3\}$$

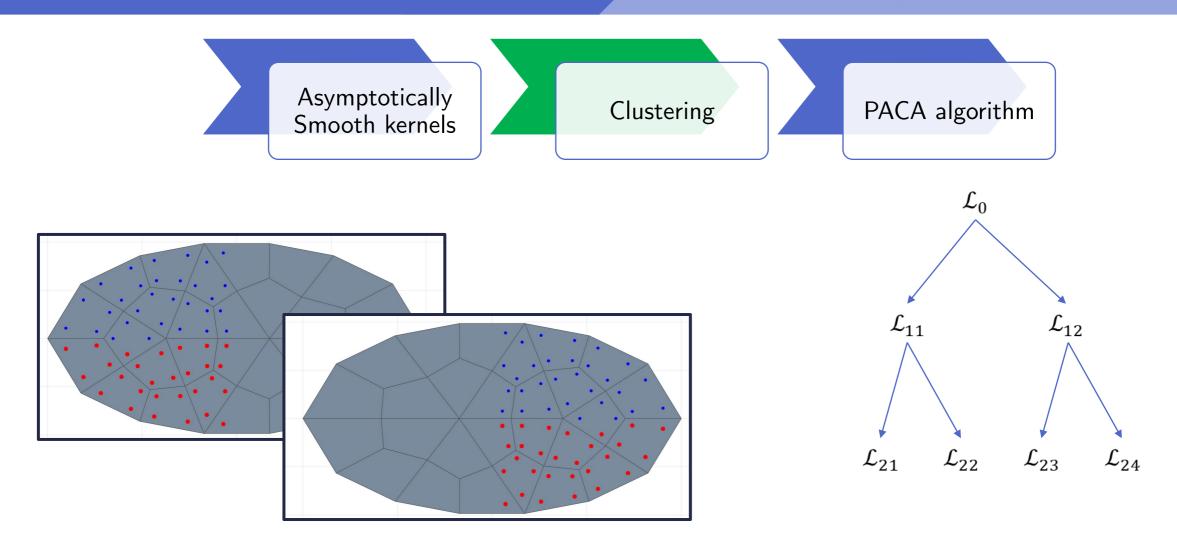
$$\forall \alpha, \beta \left| \frac{\partial^{|\alpha|+|\beta|} K(x, y)}{\partial x_{\alpha} \partial y_{\beta}} \right| \leq (|\alpha|+|\beta|) C ||x-y||^{-(|\alpha|+|\beta|+s)}$$
Smoothness condition

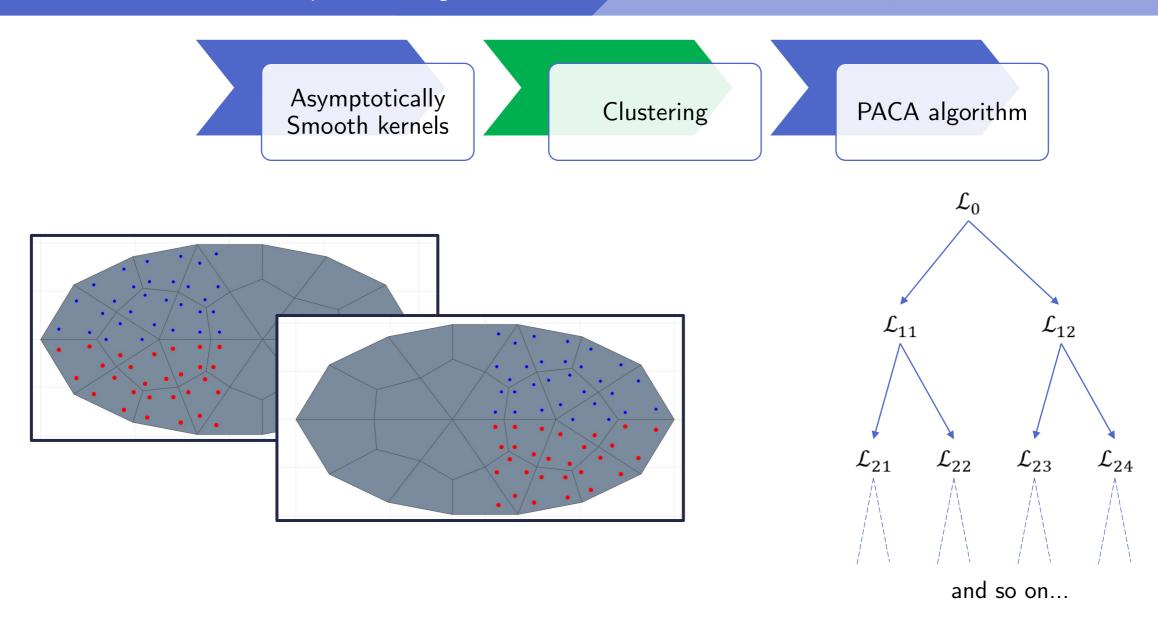


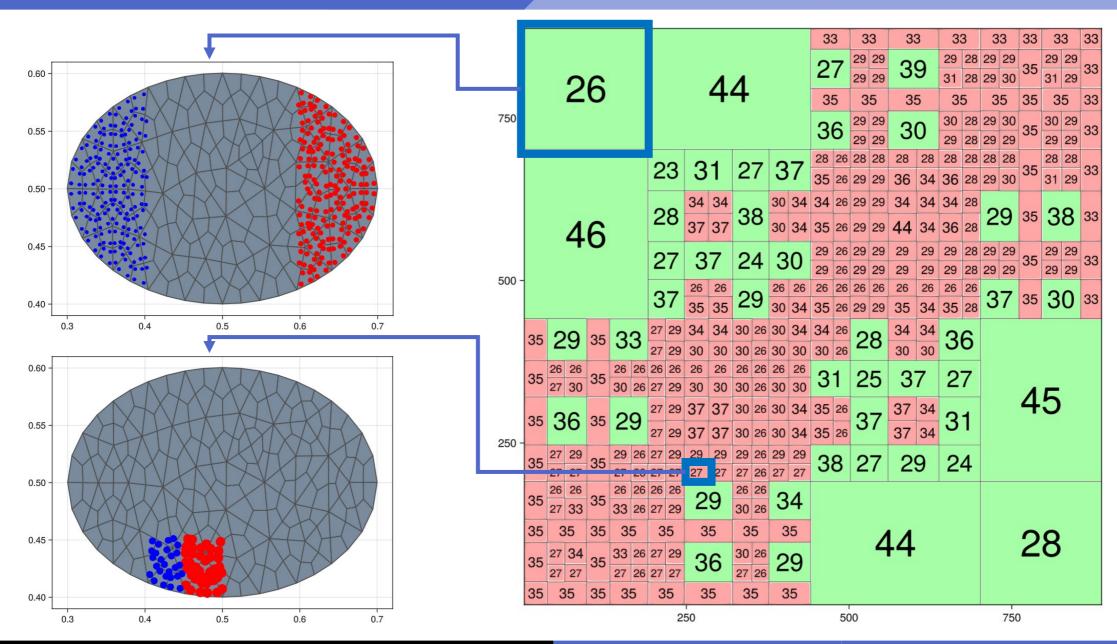
11.

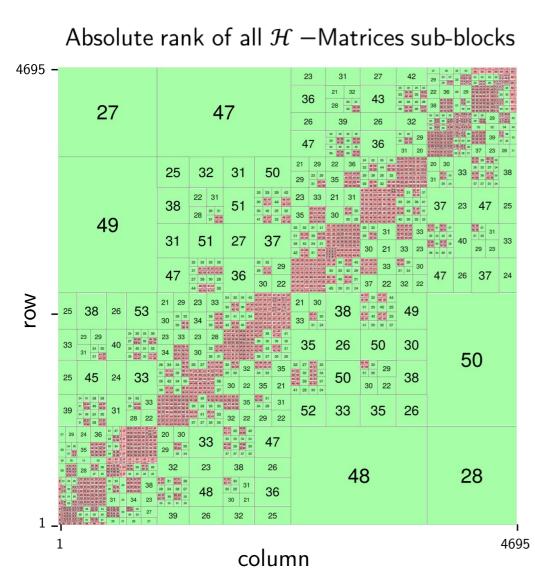




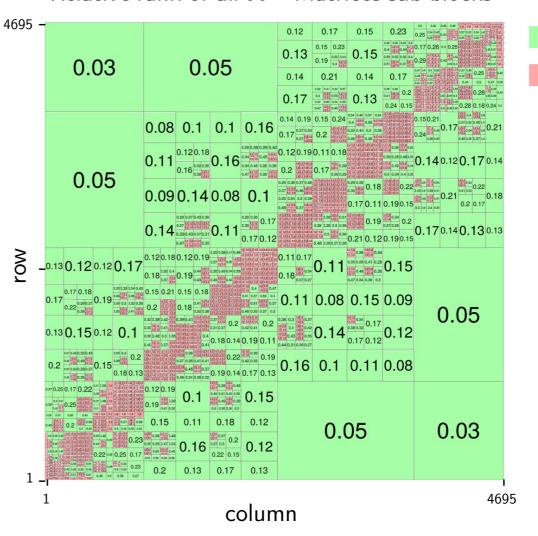






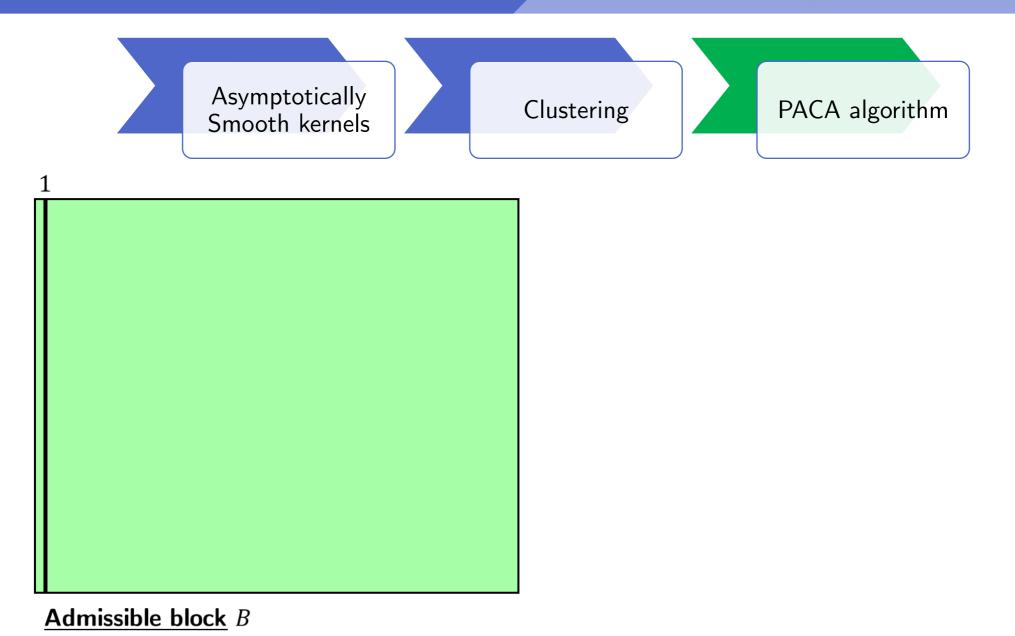


Relative rank of all \mathcal{H} –Matrices sub-blocks

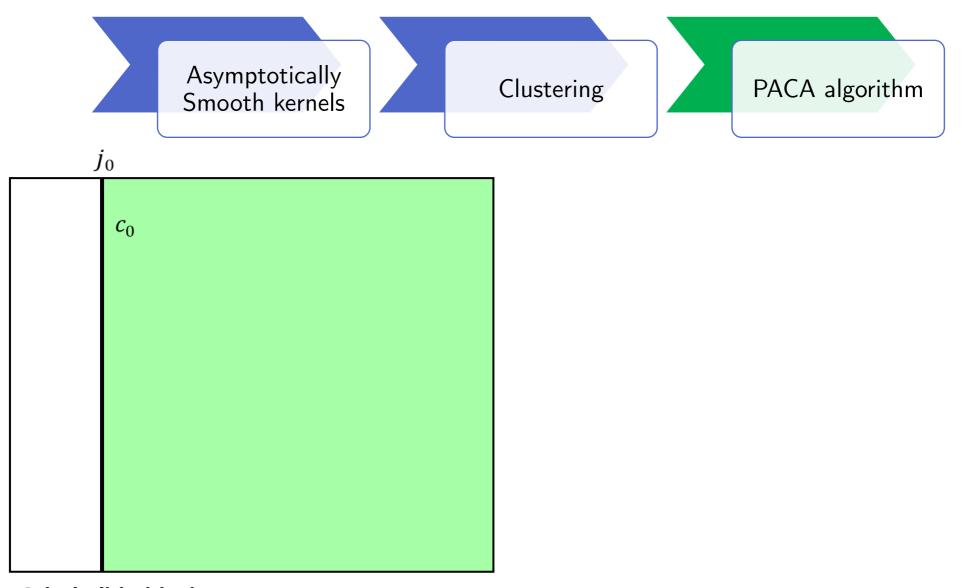


compressed

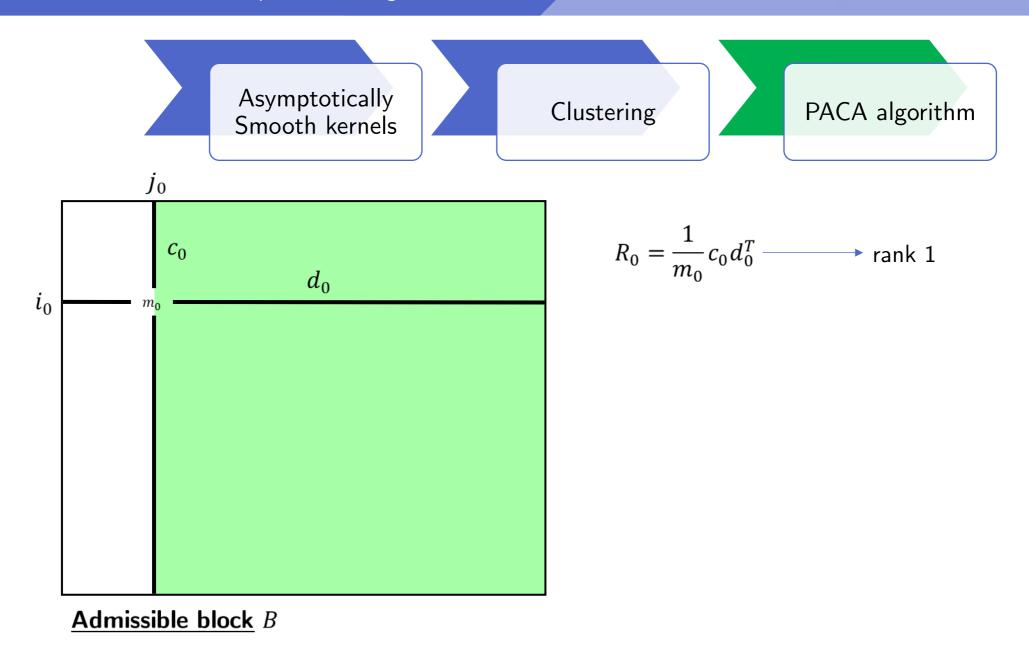
non- compressed

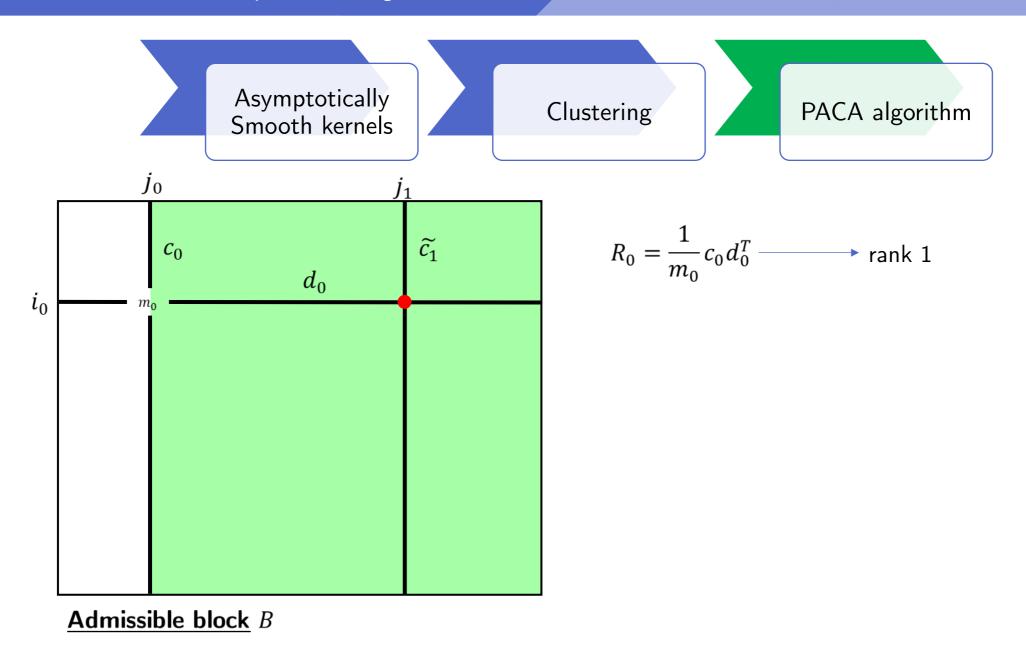


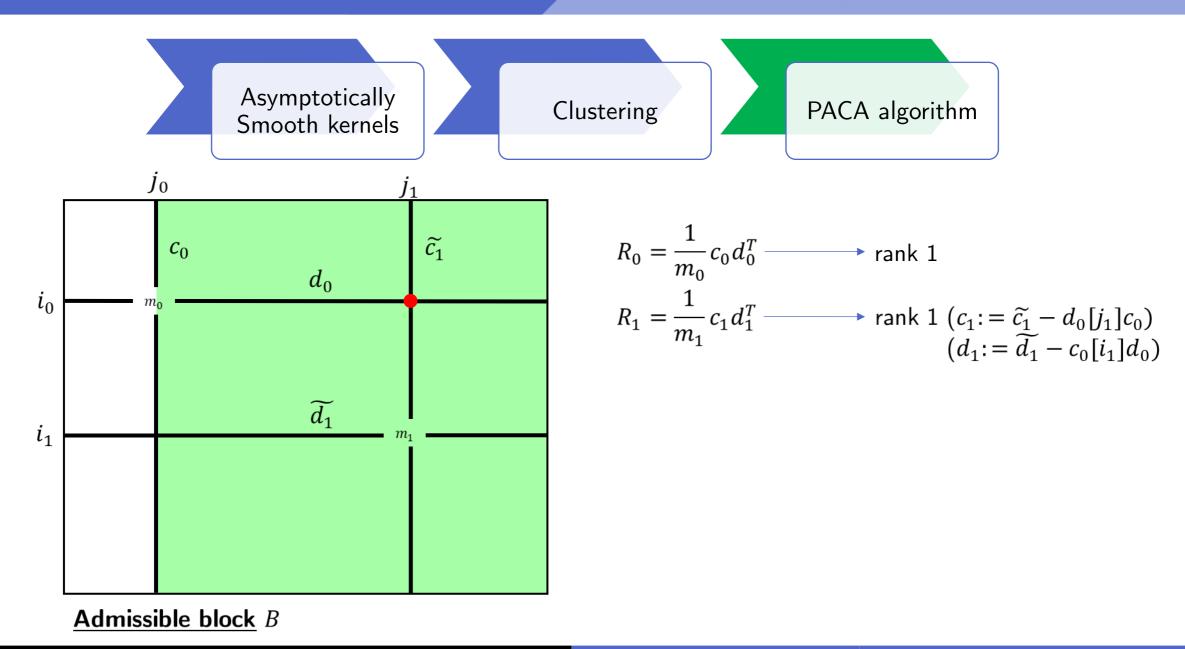
11.

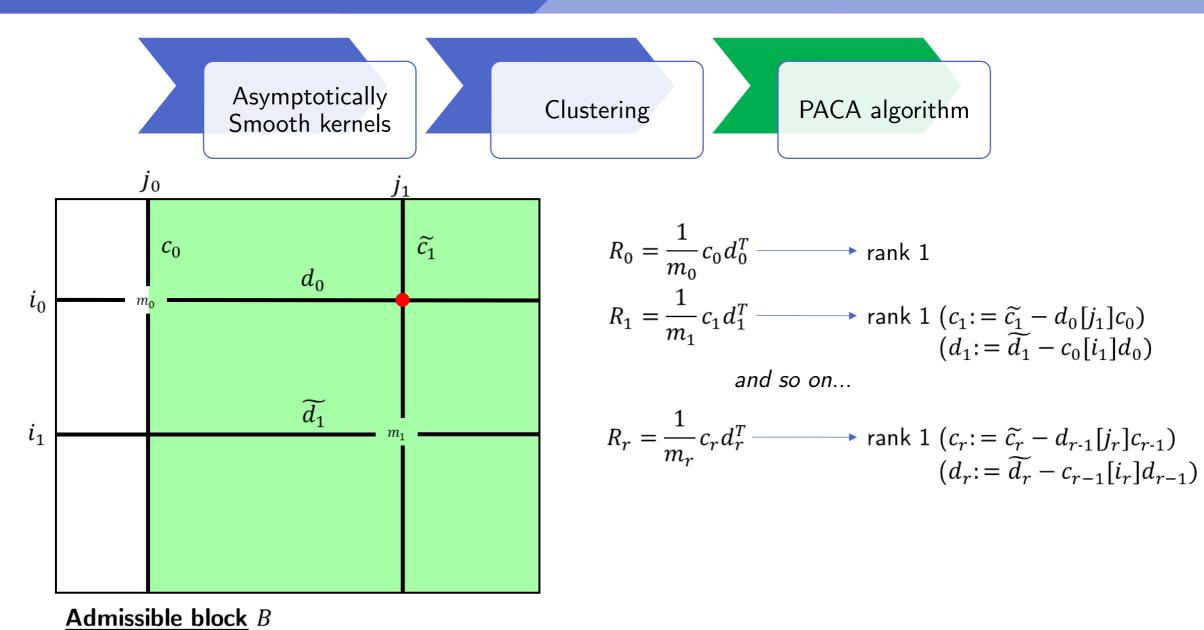


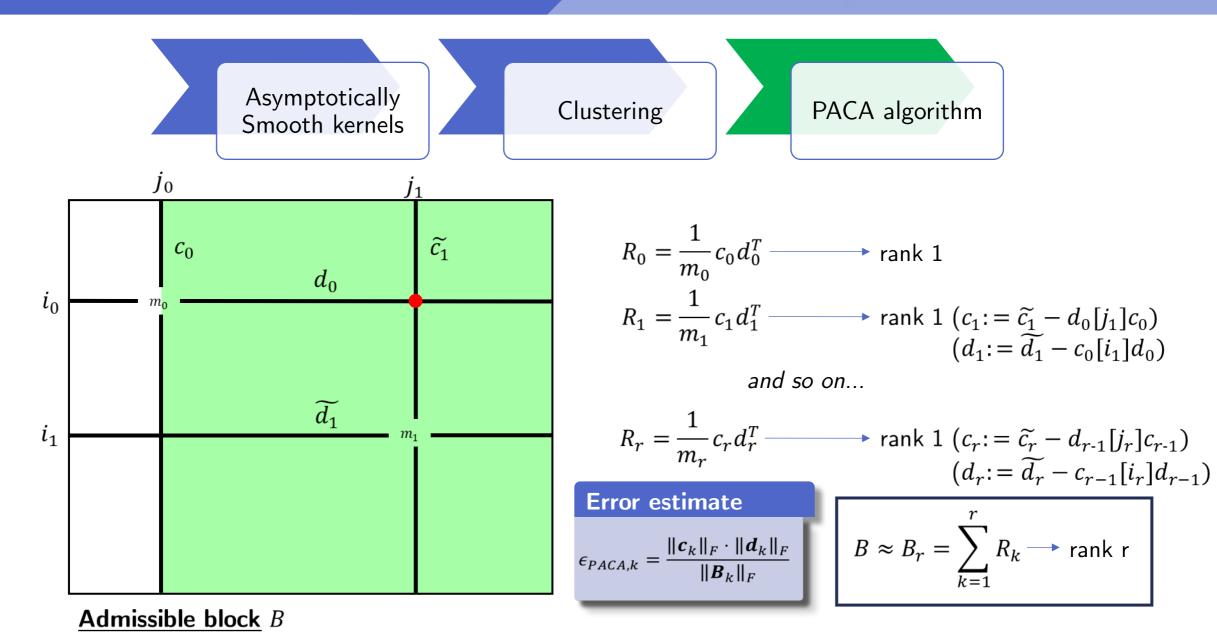
Admissible block B

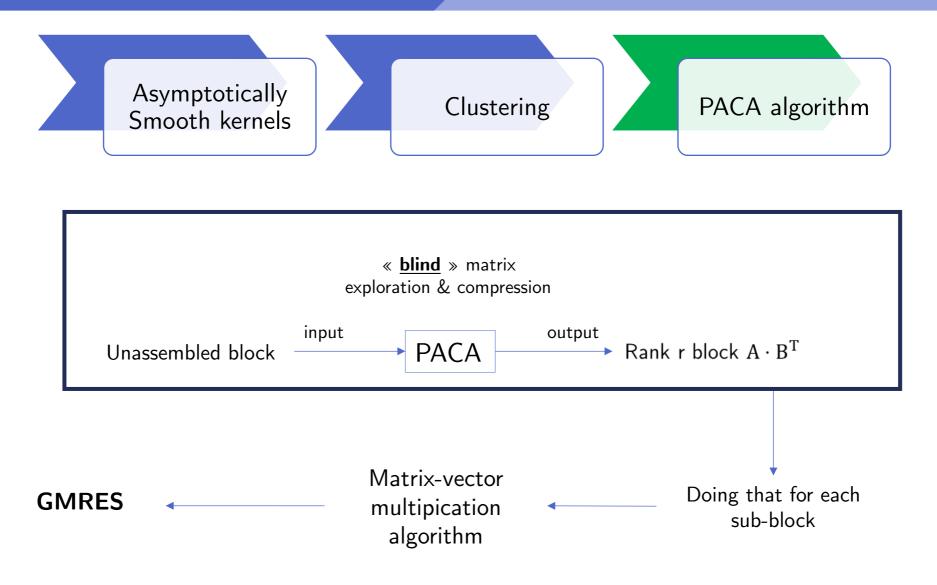












III. Integration to lifespan analysis

- i. Post-processing BEM results : computing the stress intensity factor
- ii. Integration to the global pipeline at Safran for lifespan assessment

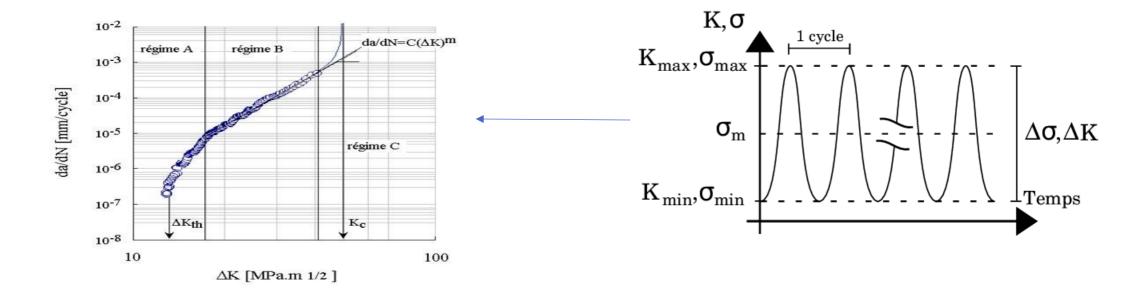
What does it mean to « solve » a crack problem at Safran?

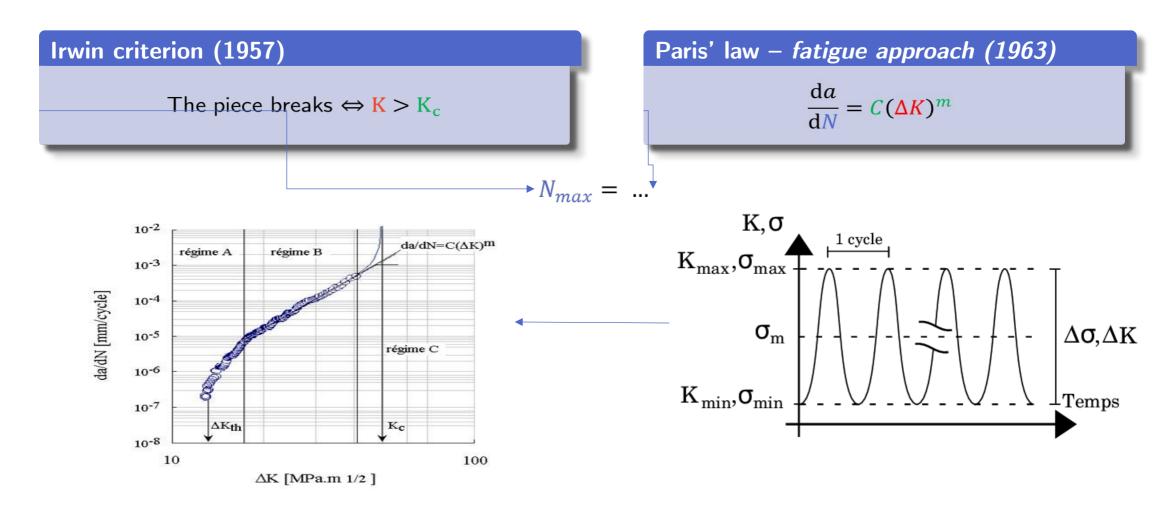
Irwin criterion (1957)

The piece breaks $\Leftrightarrow K > K_c$

Paris' law - fatigue approach (1963)

$$\frac{\mathrm{d}a}{\mathrm{d}N} = C(\Delta K)^m$$

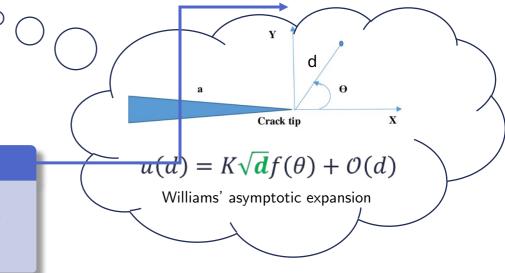


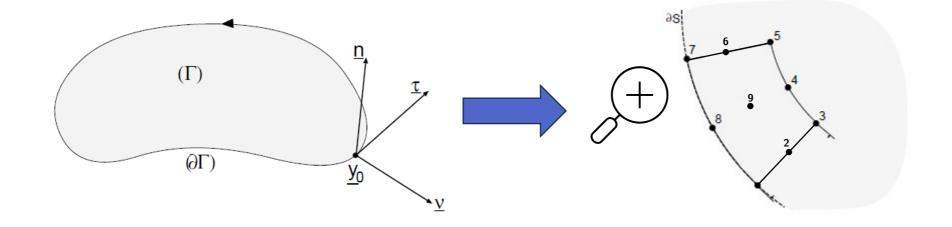


$$K = \lim_{d \to 0} \frac{\mu}{4(1-\nu)} \sqrt{\frac{2\pi}{d}} \phi_n$$

Numerical SIF

$$K = \frac{\mu}{4(1-\nu)} \sqrt{\frac{2\pi}{d_{6,9,2}}} \phi_n^{6,9,2}$$





Quarter-node éléments (a.k.a Barsoum elements)

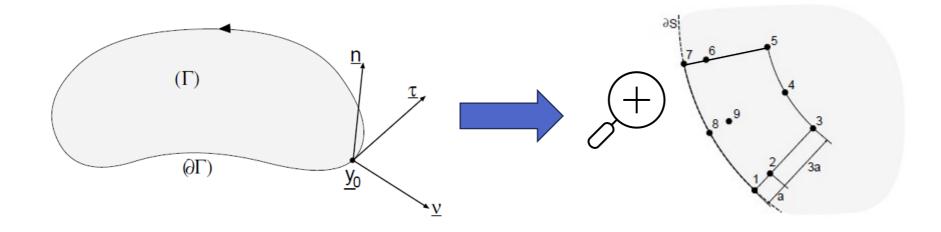
Theorical SIF

$$K = \lim_{d \to 0} \frac{\mu}{4(1-\nu)} \sqrt{\frac{2\pi}{d}} \phi_n$$

$$\phi(y) = \sqrt{\frac{d}{a}} \left(2\phi^2 - \frac{1}{2}\phi^3 + \sqrt{\frac{d}{a}} \left(\frac{1}{2}\phi^3 - \phi^2 \right) \right) \qquad \mathbf{K}^1 = \frac{\mu}{4(1-\nu)} \sqrt{2\pi} a(2\phi^2 - \phi^3)$$

Numerical SIF

$$K^{1} = \frac{\mu}{4(1-\nu)} \sqrt{2\pi} a (2\phi^{2} - \phi^{3})$$



Weighting function

Change of variable : seeking a priori the COD ϕ as $\phi = w \cdot \psi$

 w must be asymptotically as the square root of the crack front distance:

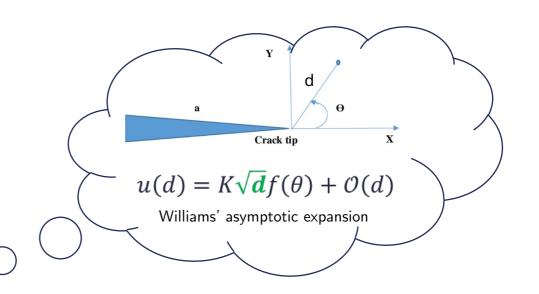
$$w \sim \sqrt{d}$$

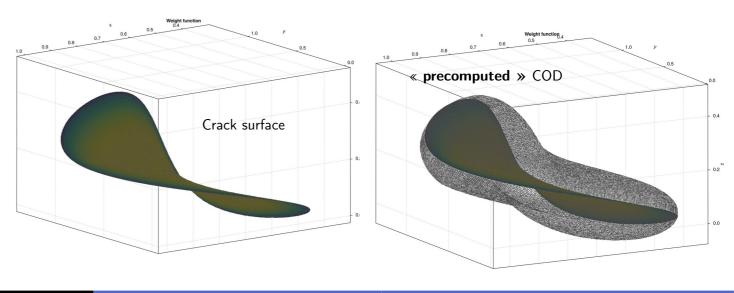
Consequences:

• New weighted kernels

$$K_w = w \cdot K$$

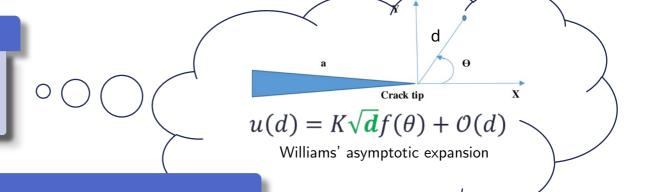
Better SIF approximation





Weighting function

Change of variable : seeking a priori the COD ϕ as $\phi = w \cdot \psi$

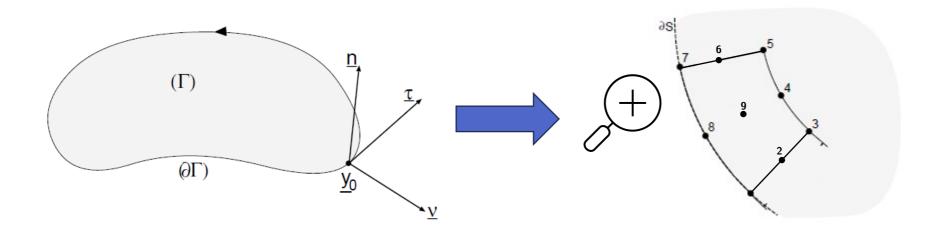


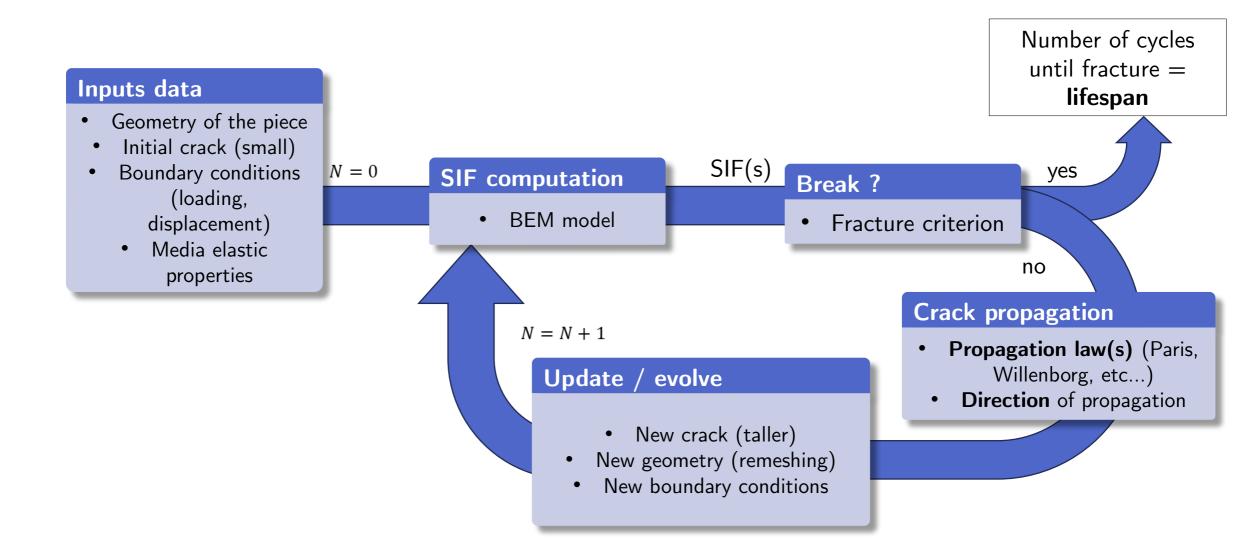
Theorical SIF

$$K = \lim_{d \to 0} \frac{\mu}{4(1-\nu)} \sqrt{\frac{2\pi}{d}} \phi_n$$

Numerical SIF

$$K^{6,9,2} = \frac{\mu}{4(1-\nu)} \sqrt{2\pi} \psi_n^{6,9,2}, \qquad \phi = w \cdot \psi$$

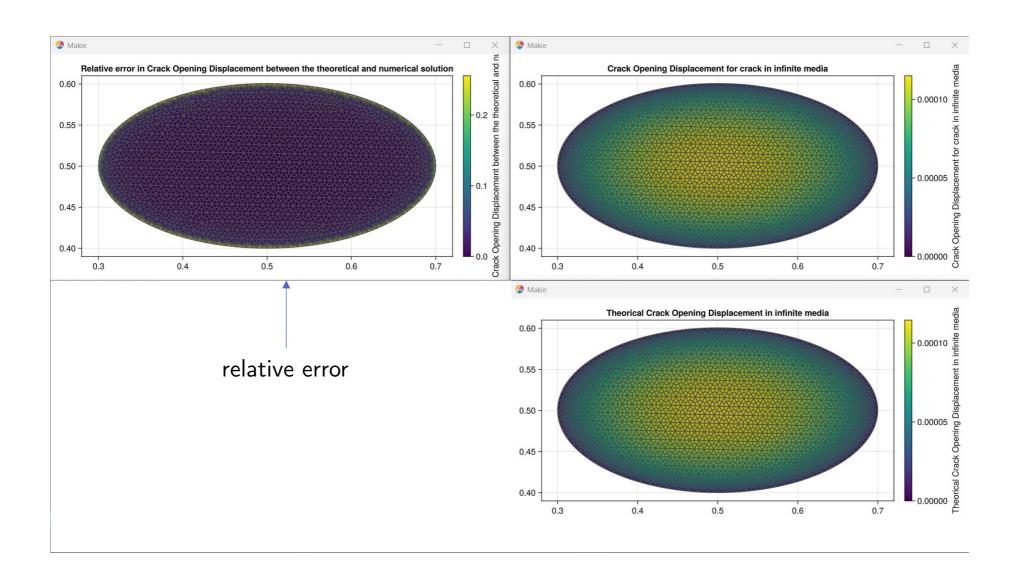




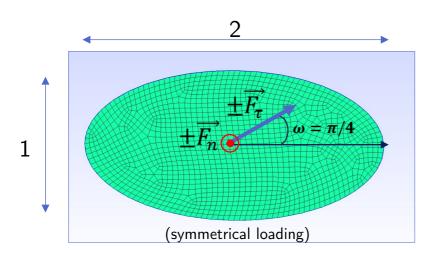
IV. Numerical examples / validation

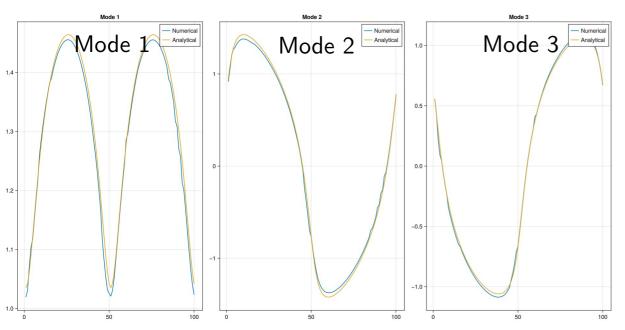
- i. Elliptic crack in infinite media
- ii. Elliptic crack in cube under mixed boundary conditions
- iii. Quick presentation of the Julia library for solving 3D crack problems: CrackFastBEM

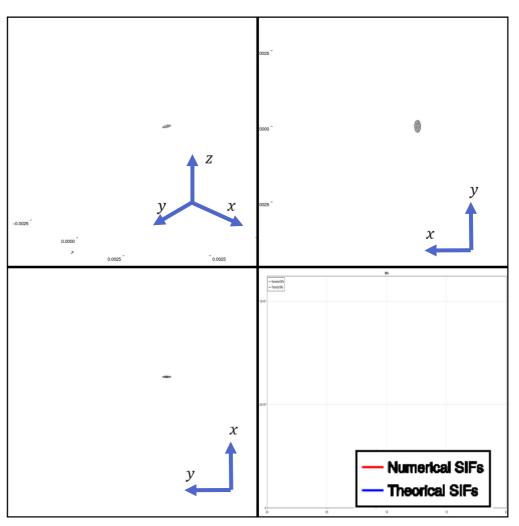
1. Elliptic crack in infinite media



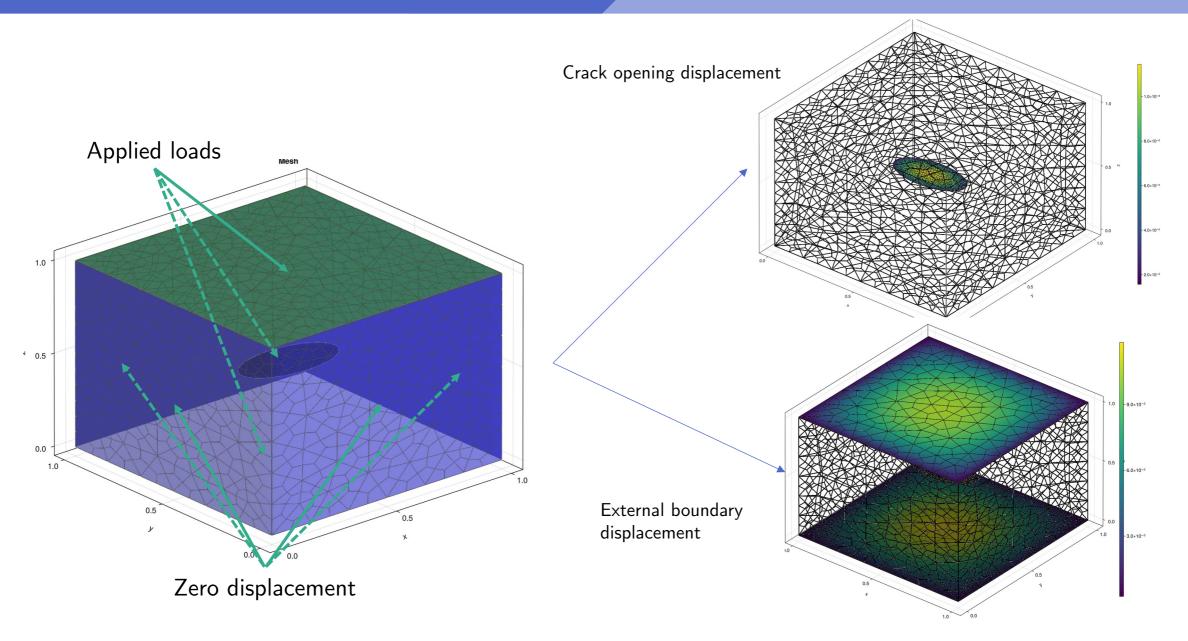
1. Elliptic crack in infinite media

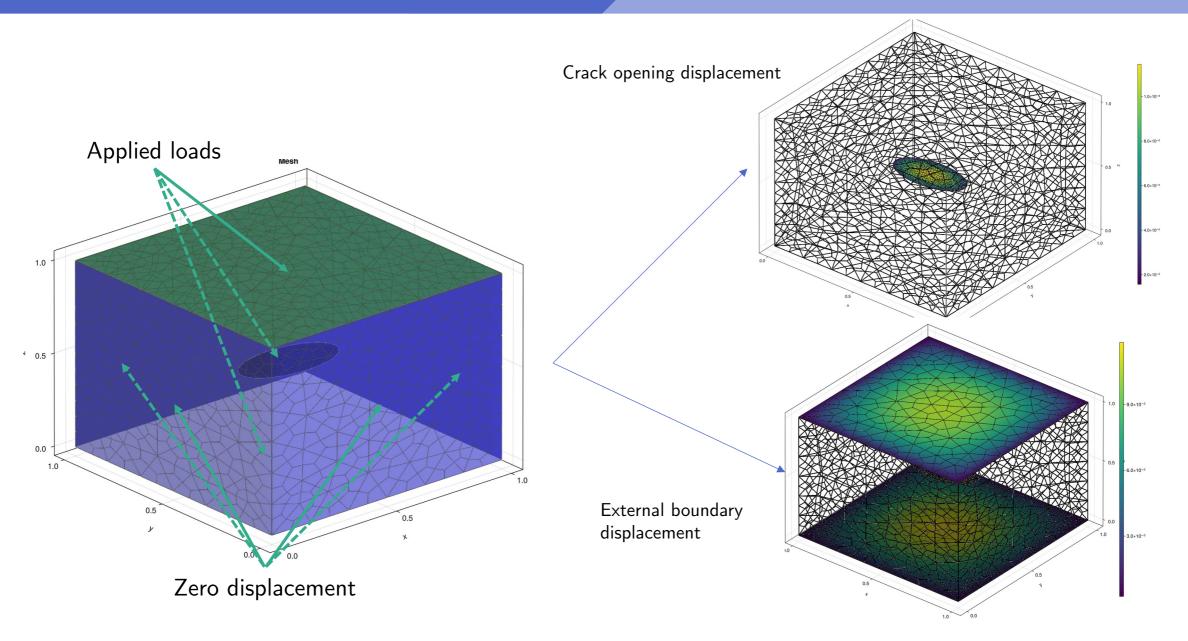






Last iteration = fatigue lifespan





Library under development in Julia

Julia package for fatigue lifespan estimation for a
 3D general crack configuration :

CrackFastBEM.jl

Features: under development, but the goals are to deal with:

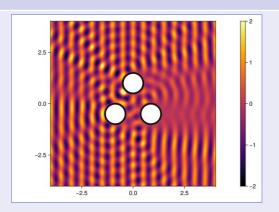
- 3D crack configurations herited from a BEM mesh
- Mixed or simple boundary conditions (Dirichlet + Neumann)
 - Crack in infinite solid
 - Crack in finite solid
 - Surface breaking cracks
- SIF computation : 1) naive approach, 2) with weighting function
- Compatible with the Bueckner's superposition principle
- « user-friendly » API

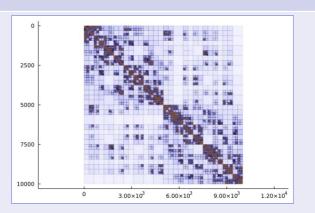
Inti.jl

Julia **library** for solving boundary and volume integral equations using Nyström discretization method

Julia **library** for assembling hierarchical matrices.

HMatrices.jl





V. Conclusion

Forthcoming goals...

- FEM / BEM coupling
- Industrialization with Safran : FEM model \rightarrow Coupling with BEM \rightarrow Bueckner superposition
- Thermal gradient : thermal dilatation term
- T & Tz stress

Thank you for your attention