The parametrisation method for invariant manifolds: application to Hopf bifurcations in follower force problems

André de F. Stabile

Séminaires internes pôle mécanique September 2025

Scope of this presentation

Nonlinear vibrating structures:

- Distributed smooth (geometric) nonlinearities
- Large vibration amplitudes
- ► Reduced-order models (ROMs)
- ► Simulation-free (data-free) ROMs
- ► FEM models

 Introduction
 DPIM
 Follower forces
 References

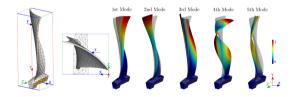
 ●0000000
 000000000000
 000000000000

Scope of this presentation

Nonlinear vibrating structures:

- Distributed smooth (geometric) nonlinearities
- ► Large vibration amplitudes
- ► Reduced-order models (ROMs)
- ► Simulation-free (data-free) ROMs
- ► FEM models

[Opreni et al. (2023)]



[Vizzaccaro et al. (2021)]

 Introduction
 DPIM
 Follower forces
 References

 ●0000000
 00000000000
 00000000000

Scope of this presentation

Nonlinear vibrating structures:

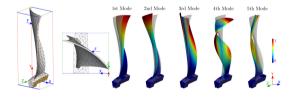
- Distributed smooth (geometric) nonlinearities
- ► Large vibration amplitudes
- ► Reduced-order models (ROMs)
- ► Simulation-free (data-free) ROMs
- ► FEM models

Why reduce?

- Faster computations
- More interpretable models
- General results and possibility of analytical solutions



[Opreni et al. (2023)]



[Vizzaccaro et al. (2021)]

Some model-order reduction techniques

Some model-order reduction techniques

Linear approaches:

- Linear vibration modes
- Modal derivatives
- Dual modes
- Proper orthogonal decomposition (POD)
- Proper generalized decomposition (PGD)

Some model-order reduction techniques

Linear approaches:

- Linear vibration modes
- Modal derivatives
- Dual modes
- Proper orthogonal decomposition (POD)
- Proper generalized decomposition (PGD)

The idea is always to look for a projection basis

Some model-order reduction techniques

Linear approaches:

- Linear vibration modes
- Modal derivatives
- Dual modes
- Proper orthogonal decomposition (POD)
- Proper generalized decomposition (PGD)

The idea is always to look for a projection basis

Nonlinear approaches:

- ► Implicit condensation and expansion
- Quadratic manifold (with modal derivatives)
- Nonlinear normal modes (center manifold, normal forms, parametrisation method, SSMs)

Some model-order reduction techniques

Linear approaches:

- Linear vibration modes
- Modal derivatives
- Dual modes
- Proper orthogonal decomposition (POD)
- Proper generalized decomposition (PGD)

The idea is always to look for a projection basis

Nonlinear approaches:

- ► Implicit condensation and expansion
- Quadratic manifold (with modal derivatives)
- Nonlinear normal modes (center manifold, normal forms, parametrisation method, SSMs)

Fully nonlinear relationship between the master and slave coordinates

Consider a linear vibrating system

$$\mathbf{M}\ddot{\mathbf{U}} + \mathbf{K}\mathbf{U} = \mathbf{0}$$

Consider a linear vibrating system

$$M\ddot{U} + KU = 0$$

Linear vibration modes are usually computed by

$$(\mathbf{K} - \omega_s^2 \mathbf{M}) \boldsymbol{\phi}_s = \mathbf{0}$$

Consider a linear vibrating system

$$M\ddot{\mathbf{U}} + \mathbf{K}\mathbf{U} = \mathbf{0}$$

Linear vibration modes are usually computed by

$$(\mathbf{K} - \omega_s^2 \mathbf{M}) \boldsymbol{\phi}_s = \mathbf{0}$$

In order to reduce the model we gather some (how many?) of the modes in a matrix Φ and impose

$$\mathbf{U} = \mathbf{\Phi}\mathbf{z}$$

to transform the equations into

$$\ddot{\mathbf{z}} + \mathbf{\Lambda}^2 \mathbf{z} = \mathbf{0}$$

We will take an alternative (dynamical systems) approach:

$$\mathbf{B}\dot{\mathbf{y}} = \mathbf{A}\mathbf{y}$$

with

$$\mathbf{y} = egin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix}, \quad \mathbf{A} = egin{bmatrix} \mathbf{0} & \mathbf{M} \\ -\mathbf{K} & \mathbf{0} \end{bmatrix}, \quad \mathbf{B} = egin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} \end{bmatrix}$$

where $\mathbf{V} = \dot{\mathbf{U}}$ are auxiliary variables to write the system first-order form.

 Introduction
 DPIM
 Follower forces
 References

 000 00 000
 000 000 000
 000 000 000

Linear vibration modes - Geometric perspective

We will take an alternative (dynamical systems) approach:

$$\mathbf{B}\dot{\mathbf{y}} = \mathbf{A}\mathbf{y}$$

with

$$\mathbf{y} = egin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix}, \quad \mathbf{A} = egin{bmatrix} \mathbf{0} & \mathbf{M} \\ -\mathbf{K} & \mathbf{0} \end{bmatrix}, \quad \mathbf{B} = egin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} \end{bmatrix}$$

where $\mathbf{V}=\dot{\mathbf{U}}$ are auxiliary variables to write the system first-order form. Then, the eigenproblem becomes

$$(\lambda_s \mathbf{B} - \mathbf{A}) \mathbf{Y}_s = \mathbf{0},$$

and the eigenvalues are complex conjugate.

 Introduction
 DPIM
 Follower forces
 References

 000 00 000
 000 000 000
 000 000 000

Linear vibration modes - Geometric perspective

We will take an alternative (dynamical systems) approach:

$$\mathbf{B}\dot{\mathbf{y}} = \mathbf{A}\mathbf{y} \quad \Rightarrow \quad \dot{\mathbf{y}} = \mathbf{\Lambda}\mathbf{y}$$

with

$$\mathbf{y} = egin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix}, \quad \mathbf{A} = egin{bmatrix} \mathbf{0} & \mathbf{M} \\ -\mathbf{K} & \mathbf{0} \end{bmatrix}, \quad \mathbf{B} = egin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} \end{bmatrix}$$

where $\mathbf{V}=\dot{\mathbf{U}}$ are auxiliary variables to write the system first-order form. Then, the eigenproblem becomes

$$(\lambda_s \mathbf{B} - \mathbf{A}) \mathbf{Y}_s = \mathbf{0},$$

and the eigenvalues are complex conjugate.

We will take an alternative (dynamical systems) approach:

$$\mathbf{B}\dot{\mathbf{y}} = \mathbf{A}\mathbf{y} \quad \Rightarrow \quad \dot{\mathbf{y}} = \mathbf{\Lambda}\mathbf{y}$$

with

$$\mathbf{y} = egin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix}, \quad \mathbf{A} = egin{bmatrix} \mathbf{0} & \mathbf{M} \\ -\mathbf{K} & \mathbf{0} \end{bmatrix}, \quad \mathbf{B} = egin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} \end{bmatrix}$$

where $\mathbf{V}=\dot{\mathbf{U}}$ are auxiliary variables to write the system first-order form. Then, the eigenproblem becomes

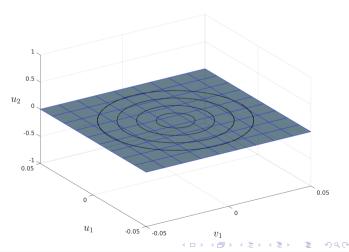
$$(\lambda_s \mathbf{B} - \mathbf{A}) \mathbf{Y}_s = \mathbf{0},$$

and the eigenvalues are complex conjugate.

Nice geometric interpretation: each pair of eigenvalues defines an invariant subspace in phase space!

$$\ddot{u}_1 + \omega_1^2 u_1 = 0$$
$$\ddot{u}_2 + \omega_2^2 u_2 = 0$$

Introduction



Linear vibration modes - Nonlinear problems

What happens when we add nonlinearities?

$$\mathbf{B}\dot{\mathbf{y}} = \mathbf{A}\mathbf{y} + \mathbf{Q}(\mathbf{y},\mathbf{y})$$

Linear vibration modes - Nonlinear problems

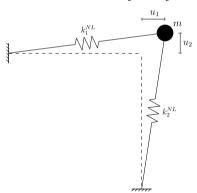
What happens when we add nonlinearities?

$$\mathbf{B}\dot{\mathbf{y}} = \mathbf{A}\mathbf{y} + \mathbf{Q}(\mathbf{y}, \mathbf{y}) \quad \Rightarrow \quad \dot{\mathbf{y}} = \mathbf{\Lambda}\mathbf{y} + \mathbf{q}(\mathbf{y}, \mathbf{y})$$

Linear vibration modes - Nonlinear problems

What happens when we add nonlinearities?

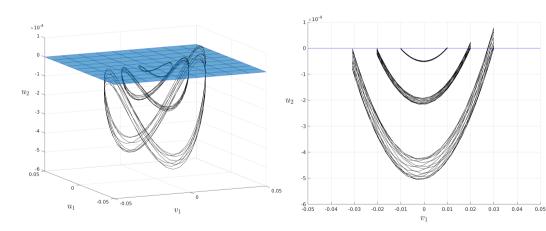
$$\mathbf{B}\dot{\mathbf{y}} = \mathbf{A}\mathbf{y} + \mathbf{Q}(\mathbf{y}, \mathbf{y}) \quad \Rightarrow \quad \dot{\mathbf{y}} = \mathbf{\Lambda}\mathbf{y} + \mathbf{q}(\mathbf{y}, \mathbf{y})$$



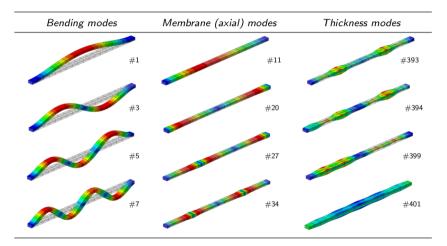
$$\begin{split} \ddot{u}_1 + \omega_1^2 u_1 + \frac{\omega_1^2}{2} \left(3u_1^2 + u_2^2 \right) + \omega_2^2 u_1 u_2 + \frac{\omega_1^2 + \omega_2^2}{2} u_1 \left(u_1^2 + u_2^2 \right) &= 0 \\ \ddot{u}_2 + \omega_2^2 u_2 + \frac{\omega_2^2}{2} \left(3u_2^2 + u_1^2 \right) + \omega_1^2 u_1 u_2 + \frac{\omega_1^2 + \omega_2^2}{2} u_2 \left(u_1^2 + u_2^2 \right) &= 0 \end{split}$$

We fix
$$\omega_1=1$$
 and $\omega_2=\sqrt{2}$

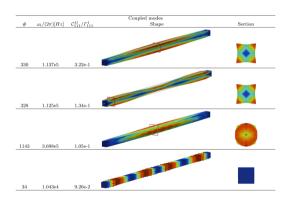
Linear vibration modes - Nonlinear problems

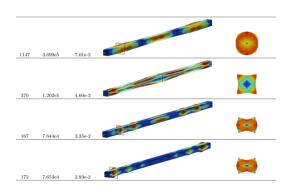


An illustrative example - Clamped-clamped 3D FE beam [Vizzaccaro et al. (2020)]

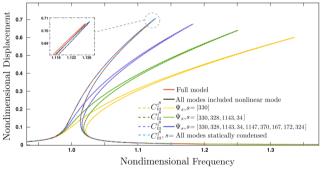


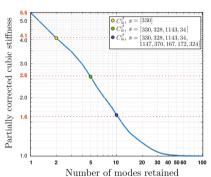
An illustrative example - Clamped-clamped 3D FE beam [Vizzaccaro et al. (2020)]





An illustrative example - Clamped-clamped 3D FE beam [Vizzaccaro et al. (2020)]





Can we find a nonlinear counterpart for the linear modes?

Can we find a nonlinear counterpart for the linear modes?

Yes, invariant manifolds!

Can we find a nonlinear counterpart for the linear modes?

Yes, invariant manifolds!

Key properties:

- Invariance: trajectories keep on the manifold
- Linear tangency: they reduce to LNMs near the origin
- Exponentially attracting: trajectories of the full system rapidly converge to these objects

 Introduction
 DPIM
 Follower forces
 References

 000000000
 0000000000
 00000000000

Nonlinear normal modes (NNMs) - Invariant manifolds in phase space

Can we find a nonlinear counterpart for the linear modes?

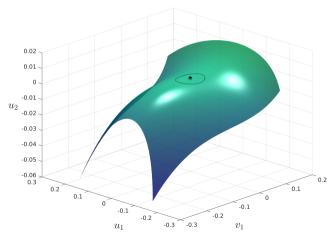
Yes, invariant manifolds!

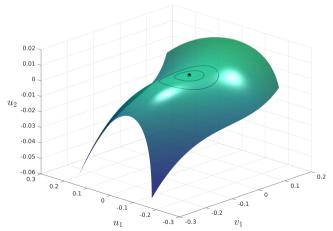
Key properties:

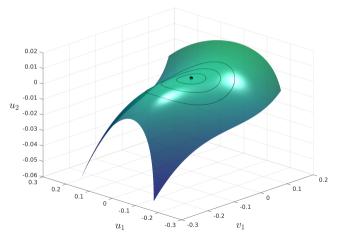
- ► Invariance: trajectories keep on the manifold
- Linear tangency: they reduce to LNMs near the origin
- Exponentially attracting: trajectories of the full system rapidly converge to these objects

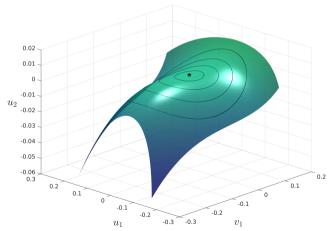
How to compute?

- ► Center manifold theory [Shaw and Pierre (1991, 1993, 1994)]
- Normal form technique [Jézéquel and Lamarque (1991); Touzé (2003); Touzé et al. (2004); Touzé and Amabili (2006)]
- Parametrisation method for invariant manifolds [Cabré et al. (2003a,b, 2005); Haro et al. (2016)]









Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

We will consider mechanical systems of the form

$$\mathbf{M}\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}\mathbf{U} + \mathbf{G}(\mathbf{U}, \mathbf{U}) + \mathbf{H}(\mathbf{U}, \mathbf{U}, \mathbf{U}) = \mathbf{F}(t)$$

Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

We will consider mechanical systems of the form

$$\mathbf{M}\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}\mathbf{U} + \mathbf{G}(\mathbf{U}, \mathbf{U}) + \mathbf{H}(\mathbf{U}, \mathbf{U}, \mathbf{U}) = \mathbf{F}(t)$$

but we treat first the autonomous case.

We will consider mechanical systems of the form

$$\mathbf{M}\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}\mathbf{U} + \mathbf{G}(\mathbf{U}, \mathbf{U}) + \mathbf{H}(\mathbf{U}, \mathbf{U}, \mathbf{U}) = \mathbf{F}(t)$$

but we treat first the autonomous case. This can be written in first order by choosing

$$\mathbf{y} = egin{bmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{R} \end{bmatrix}, \quad \mathbf{A} = egin{bmatrix} \mathbf{0} & \mathbf{M} & \mathbf{0} \\ -\mathbf{K} & \mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}, \quad \mathbf{B} = egin{bmatrix} \mathbf{M} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

and a suitable Q(y, y). Note that the last equations are algebraic.

Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

We will consider mechanical systems of the form

$$\mathbf{M}\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}\mathbf{U} + \mathbf{G}(\mathbf{U}, \mathbf{U}) + \mathbf{H}(\mathbf{U}, \mathbf{U}, \mathbf{U}) = \mathbf{F}(t)$$

but we treat first the autonomous case. This can be written in first order by choosing

$$\mathbf{y} = egin{bmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{R} \end{bmatrix}, \quad \mathbf{A} = egin{bmatrix} \mathbf{0} & \mathbf{M} & \mathbf{0} \\ -\mathbf{K} & \mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}, \quad \mathbf{B} = egin{bmatrix} \mathbf{M} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

and a suitable Q(y, y). Note that the last equations are algebraic.

To compute the manifold we introduce new (normal) coordinates z

$$\mathbf{z} \in \mathbf{C}^d$$
, $\mathbf{y} \in \mathbf{R}^D$, $d \ll D$

In order to compute the manifold we introduce its parametrisation and reduced dynamics

$$y = W(z)$$

$$\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z})$$

In order to compute the manifold we introduce its parametrisation and reduced dynamics

$$y = W(z)$$

$$\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z})$$

To fulfill the invariance property they must verify the invariance equation

$$\mathbf{B}\nabla_{\mathbf{z}}\mathbf{W}(\mathbf{z})\mathbf{f}(\mathbf{z}) = \mathbf{A}\mathbf{W}(\mathbf{z}) - \mathbf{Q}(\mathbf{W}(\mathbf{z}),\mathbf{W}(\mathbf{z}))$$

In order to compute the manifold we introduce its parametrisation and reduced dynamics

$$\mathbf{y} = \mathbf{W}(\mathbf{z}) = \sum_{p=1}^{o} \left[\mathbf{W}(\mathbf{z}) \right]_p = \sum_{p=1}^{o} \sum_{k=1}^{m_p} \mathbf{W}^{(p,k)} \mathbf{z}^{\boldsymbol{\alpha}(p,k)}$$

$$\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z}) = \sum_{p=1}^{o} \left[\mathbf{f}(\mathbf{z}) \right]_p = \sum_{p=1}^{o} \sum_{k=1}^{m_p} \mathbf{f}^{(p,k)} \mathbf{z}^{\boldsymbol{\alpha}(p,k)}$$

To fulfill the invariance property they must verify the invariance equation

$$\mathbf{B}\nabla_{\mathbf{z}}\mathbf{W}(\mathbf{z})\mathbf{f}(\mathbf{z}) = \mathbf{A}\mathbf{W}(\mathbf{z}) - \mathbf{Q}(\mathbf{W}(\mathbf{z}),\mathbf{W}(\mathbf{z}))$$

Which is solved order-by-order $\forall p \in \{1, \dots, o\}$:

$$\left[\mathbf{B}\nabla_{\mathbf{z}}\mathbf{W}(\mathbf{z})\mathbf{f}(\mathbf{z})\right]_{p}=\left[\mathbf{A}\mathbf{W}(\mathbf{z})\right]_{p}+\left[\mathbf{Q}(\mathbf{W}(\mathbf{z}),\mathbf{W}(\mathbf{z}))\right]_{p}.$$

We solve first the order 1 equation. We note that

$$\left[\mathbf{W}(\mathbf{z})\right]_1 = \mathbf{W}^{(1)}\mathbf{z}$$

 $\left[\mathbf{f}(\mathbf{z})\right]_1 = \mathbf{f}^{(1)}\mathbf{z}$

We solve first the order 1 equation. We note that

$$\left[\mathbf{W}(\mathbf{z})\right]_1 = \mathbf{W}^{(1)}\mathbf{z}$$

 $\left[\mathbf{f}(\mathbf{z})\right]_1 = \mathbf{f}^{(1)}\mathbf{z}$

$$[\mathbf{I}(\mathbf{z})]_1 = \mathbf{I}^{(z)}$$

And thus the homological equation becomes

$$\mathbf{B}\mathbf{W}^{(1)}\mathbf{f}^{(1)} = \mathbf{A}\mathbf{W}^{(1)}$$

We solve first the order 1 equation. We note that

$$\left[\mathbf{W}(\mathbf{z})\right]_1 = \mathbf{W}^{(1)}\mathbf{z}$$

$$\left[\mathbf{f}(\mathbf{z})\right]_1 = \mathbf{f}^{(1)}\mathbf{z}$$

And thus the homological equation becomes

$$\mathbf{B}\mathbf{W}^{(1)}\mathbf{f}^{(1)} = \mathbf{A}\mathbf{W}^{(1)}$$

To enforce tangency to the master eigenspace we choose

$$\mathbf{W}^{(1)} = \mathbf{Y}$$

$$\mathbf{f}^{(1)} = \mathbf{\Lambda}$$

We solve first the order 1 equation. We note that

$$\left[\mathbf{W}(\mathbf{z})\right]_1 = \mathbf{W}^{(1)}\mathbf{z}$$

$$\left[\mathbf{f}(\mathbf{z})\right]_1 = \mathbf{f}^{(1)}\mathbf{z}$$

And thus the homological equation becomes

$$\mathbf{BW}^{(1)}\mathbf{f}^{(1)} = \mathbf{AW}^{(1)}$$

To enforce tangency to the master eigenspace we choose

$$\mathbf{W}^{(1)} = \mathbf{Y}$$
$$\mathbf{f}^{(1)} = \mathbf{\Lambda}$$

In what follows we also need to define the left eigenvalue problem:

$$\mathbf{X}_s^*(\lambda_s \mathbf{B} - \mathbf{A}) = \mathbf{0}$$

The homological equation at order p is

$$\mathbf{B}[\nabla_{\mathbf{z}}\mathbf{W}(\mathbf{z})\mathbf{f}(\mathbf{z})]_p = \mathbf{A}[\mathbf{W}(\mathbf{z})]_p + [\mathbf{Q}(\mathbf{z},\mathbf{z})]_p$$

The homological equation at order p is

$$\mathbf{B}[\nabla_{\mathbf{z}}\mathbf{W}(\mathbf{z})\mathbf{f}(\mathbf{z})]_p = \mathbf{A}[\mathbf{W}(\mathbf{z})]_p + [\mathbf{Q}(\mathbf{z},\mathbf{z})]_p$$

For monomial (p, k):

$$(\sigma^{(p,k)}\mathbf{B} - \mathbf{A})\mathbf{W}^{(p,k)} + \sum_{s=1}^d \mathbf{B}\mathbf{Y}_s f_s^{(p,k)} = \mathbf{R}^{(p,k)}$$

with the $\mathbf{R}^{(p,k)}$ computed only from the previous orders and

$$\sigma^{(p,k)} = \sum_{s=1}^{d} \alpha(p,k)_s \cdot \lambda_s$$

The homological equation at order p is

$$\mathbf{B}[\nabla_{\mathbf{z}}\mathbf{W}(\mathbf{z})\mathbf{f}(\mathbf{z})]_p = \mathbf{A}[\mathbf{W}(\mathbf{z})]_p + [\mathbf{Q}(\mathbf{z},\mathbf{z})]_p$$

For monomial (p, k):

$$(\sigma^{(p,k)}\mathbf{B} - \mathbf{A})\mathbf{W}^{(p,k)} + \sum_{s=1}^d \mathbf{B}\mathbf{Y}_s f_s^{(p,k)} = \mathbf{R}^{(p,k)}$$

with the $\mathbf{R}^{(p,k)}$ computed only from the previous orders and

$$\sigma^{(p,k)} = \sum_{s=1}^{d} \boldsymbol{\alpha}(p,k)_s \cdot \lambda_s$$

Problem: too many unknowns!

To find a solution, we project into the modal basis:

$$(\sigma^{(p,k)} - \lambda_s)\xi_s^{(p,k)} + f_s^{(p,k)} = S_s^{(p,k)}$$

To find a solution, we project into the modal basis:

$$(\sigma^{(p,k)} - \lambda_s)\xi_s^{(p,k)} + f_s^{(p,k)} = S_s^{(p,k)}$$

Either

- ▶ Set $f_s^{(p,k)} = S_s^{(p,k)}$ and $\xi_s^{(p,k)} = 0$. The monomial is resonant, and $s \in \mathbb{R}^{(p,k)}$.
- ▶ Set $f_s^{(p,k)} = 0$ and $\xi_s^{(p,k)} = \frac{S_s^{(p,k)}}{\sigma^{(p,k)} \lambda_s}$. The monomial is not resonant, and $s \notin \mathcal{R}^{(p,k)}$.

To find a solution, we project into the modal basis:

$$(\sigma^{(p,k)} - \lambda_s)\xi_s^{(p,k)} + f_s^{(p,k)} = S_s^{(p,k)}$$

Either

- ▶ Set $f_s^{(p,k)} = S_s^{(p,k)}$ and $\xi_s^{(p,k)} = 0$. The monomial is resonant, and $s \in \mathbb{R}^{(p,k)}$.
- ▶ Set $f_s^{(p,k)} = 0$ and $\xi_s^{(p,k)} = \frac{S_s^{(p,k)}}{\sigma^{(p,k)} \lambda_*}$. The monomial is not resonant, and $s \notin \mathcal{R}^{(p,k)}$.

Many styles of parametrisation are possible, with two main ones:

- Graph style All monomials are chosen as resonant.
- ▶ CNF style Only when $\sigma^{(p,k)} \approx \lambda_s$ is a monomial resonant.

To find a solution, we project into the modal basis:

$$(\sigma^{(p,k)} - \lambda_s)\xi_s^{(p,k)} + f_s^{(p,k)} = S_s^{(p,k)}$$

Either

- ▶ Set $f_s^{(p,k)} = S_s^{(p,k)}$ and $\xi_s^{(p,k)} = 0$. The monomial is resonant, and $s \in \mathbb{R}^{(p,k)}$.
- ▶ Set $f_s^{(p,k)} = 0$ and $\xi_s^{(p,k)} = \frac{S_s^{(p,k)}}{\sigma^{(p,k)} \lambda_*}$. The monomial is not resonant, and $s \notin \mathcal{R}^{(p,k)}$.

Many styles of parametrisation are possible, with two main ones:

- ► Graph style All monomials are chosen as resonant.
- lacktriangle CNF style Only when $\sigma^{(p,k)} pprox \lambda_s$ is a monomial resonant.

The condition $\xi_s^{(p,k)}=0$ translates into physical space as

$$\mathbf{X}_s^* \mathbf{B} \mathbf{W}^{(p,k)} = 0$$

Finally, for each monomial a homological equation

$$egin{bmatrix} \sigma^{(p,k)}\mathbf{B}-\mathbf{A} & \mathbf{B}\mathbf{Y}_{\mathcal{R}} & \mathbf{0} \ \mathbf{X}_{\mathcal{R}}^{\star}\mathbf{B} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{W}^{(p,k)} \ \mathbf{f}^{(p,k)}_{\mathcal{R}} \ \end{bmatrix} = egin{bmatrix} \mathbf{R}^{(p,k)} \ \mathbf{0} \ \mathbf{0} \end{bmatrix}$$

is solved in order to find the unknown coefficients $\mathbf{W}^{(p,k)}$ and $\mathbf{f}^{(p,k)}$.

Now, what happens for forced systems?

Now, what happens for forced systems?

$$\mathbf{F}(t) = \mathbf{F}_c \cos \Omega t + \mathbf{F}_s \sin \Omega t = \bar{\mathbf{F}} \bar{\mathbf{y}}$$

with

$$\bar{y}_{1,2} = e^{\pm i\Omega t}$$

Now, what happens for forced systems?

$$\mathbf{F}(t) = \mathbf{F}_c \cos \Omega t + \mathbf{F}_s \sin \Omega t = \bar{\mathbf{F}} \bar{\mathbf{y}}$$

with

$$\bar{y}_{1,2} = e^{\pm i\Omega t}$$

The full system can be written as

$$\underbrace{\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{B}} \end{bmatrix}}_{\tilde{\mathbf{B}}} \underbrace{\begin{bmatrix} \dot{\mathbf{y}} \\ \dot{\bar{\mathbf{y}}} \end{bmatrix}}_{\dot{\bar{\mathbf{y}}}} = \underbrace{\begin{bmatrix} \mathbf{A} & \bar{\mathbf{F}} \\ \mathbf{0} & \bar{\mathbf{A}} \end{bmatrix}}_{\tilde{\mathbf{A}}} \underbrace{\begin{bmatrix} \mathbf{y} \\ \bar{\mathbf{y}} \end{bmatrix}}_{\tilde{\mathbf{y}}} + \underbrace{\begin{bmatrix} \mathbf{Q}(\mathbf{y}, \mathbf{y}) \\ \mathbf{0} \end{bmatrix}}_{\tilde{\mathbf{Q}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}})}$$

with

$$\tilde{\mathbf{B}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \tilde{\mathbf{A}} = \begin{bmatrix} i\Omega & 0 \\ 0 & -i\Omega \end{bmatrix}.$$

Now, what happens for forced systems?

$$\mathbf{F}(t) = \mathbf{F}_c \cos \Omega t + \mathbf{F}_s \sin \Omega t = \bar{\mathbf{F}} \bar{\mathbf{y}}$$

with

$$\bar{y}_{1,2} = e^{\pm i\Omega t}$$

The full system can be written as

$$\underbrace{\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{B}} \end{bmatrix}}_{\tilde{\mathbf{B}}} \underbrace{\begin{bmatrix} \dot{\mathbf{y}} \\ \dot{\bar{\mathbf{y}}} \end{bmatrix}}_{\dot{\bar{\mathbf{y}}}} = \underbrace{\begin{bmatrix} \mathbf{A} & \bar{\mathbf{F}} \\ \mathbf{0} & \bar{\mathbf{A}} \end{bmatrix}}_{\tilde{\mathbf{A}}} \underbrace{\begin{bmatrix} \mathbf{y} \\ \bar{\mathbf{y}} \end{bmatrix}}_{\tilde{\mathbf{y}}} + \underbrace{\begin{bmatrix} \mathbf{Q}(\mathbf{y}, \mathbf{y}) \\ \mathbf{0} \end{bmatrix}}_{\tilde{\mathbf{Q}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}})}$$

with

$$\tilde{\mathbf{B}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \tilde{\mathbf{A}} = \begin{bmatrix} i\Omega & 0 \\ 0 & -i\Omega \end{bmatrix}.$$

The system can be treated as in the autonomous case!

This contribution

Extend the parametrisation method in order to treat **bifurcating systems**.

This contribution

- **Extend** the parametrisation method in order to treat **bifurcating systems**.
- ► Inclusion of the control parameter as an added variable [Vizzaccaro et al. (2024); Li and Wang (2024)].

This contribution

- **Extend** the parametrisation method in order to treat **bifurcating systems**.
- ► Inclusion of the control parameter as an added variable [Vizzaccaro et al. (2024); Li and Wang (2024)].

Outline of this part

- Inclusion of the bifurcation parameter
- Ziegler's pendulum
 - Linear stability analysis
 - Master mode selection
 - Results
- Beck's column (FE model)
- Conclusions
- ► A similar example: NS equations

We consider problems of the form

$$\underbrace{\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}}_{\widetilde{\mathbf{B}}} \underbrace{\begin{bmatrix} \mathbf{y} \\ \boldsymbol{\mu} \end{bmatrix}}_{\widetilde{\mathbf{y}}} = \underbrace{\begin{bmatrix} \mathbf{A}_t & \mathbf{A}_0 \\ \mathbf{0} & 0 \end{bmatrix}}_{\widetilde{\mathbf{A}}_t} \underbrace{\begin{bmatrix} \mathbf{y} \\ \boldsymbol{\mu} \end{bmatrix}}_{\widetilde{\mathbf{y}}} + \underbrace{\begin{bmatrix} \mathbf{Q}_1(\mathbf{y}, \mathbf{y}) + \mathbf{Q}_2(\mathbf{y}, \boldsymbol{\mu}) + \mathbf{Q}_3(\boldsymbol{\mu}, \boldsymbol{\mu}) \\ 0 \\ \widetilde{\mathbf{Q}}(\widetilde{\mathbf{y}}, \widetilde{\mathbf{y}}) \end{bmatrix}}_{\widetilde{\mathbf{Q}}(\widetilde{\mathbf{y}}, \widetilde{\mathbf{y}})}$$

Which is the same as in [Vizzaccaro et al. (2024)].

We consider problems of the form

$$\underbrace{\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}}_{\widetilde{\mathbf{B}}} \underbrace{\begin{bmatrix} \mathbf{y} \\ \mu \end{bmatrix}}_{\widetilde{\mathbf{y}}} = \underbrace{\begin{bmatrix} \mathbf{A}_t & \mathbf{A}_0 \\ \mathbf{0} & 0 \end{bmatrix}}_{\widetilde{\mathbf{A}}_t} \underbrace{\begin{bmatrix} \mathbf{y} \\ \mu \end{bmatrix}}_{\widetilde{\mathbf{y}}} + \underbrace{\begin{bmatrix} \mathbf{Q}_1(\mathbf{y}, \mathbf{y}) + \mathbf{Q}_2(\mathbf{y}, \mu) + \mathbf{Q}_3(\mu, \mu) \\ 0 \\ \widetilde{\mathbf{Q}}(\widetilde{\mathbf{y}}, \widetilde{\mathbf{y}}) \end{bmatrix}}_{\widetilde{\mathbf{Q}}(\widetilde{\mathbf{y}}, \widetilde{\mathbf{y}})}$$

Which is the same as in [Vizzaccaro et al. (2024)]. The parameter is treated as an **added** variable:

$$\widetilde{\mathbf{z}} = egin{bmatrix} \mathbf{z} \ \mu \end{bmatrix}$$

We consider problems of the form

$$\underbrace{\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}}_{\widetilde{\mathbf{B}}} \underbrace{\begin{bmatrix} \dot{\mathbf{y}} \\ \mu \end{bmatrix}}_{\widetilde{\mathbf{y}}} = \underbrace{\begin{bmatrix} \mathbf{A}_t & \mathbf{A}_0 \\ \mathbf{0} & 0 \end{bmatrix}}_{\widetilde{\mathbf{A}}_t} \underbrace{\begin{bmatrix} \mathbf{y} \\ \mu \end{bmatrix}}_{\widetilde{\mathbf{y}}} + \underbrace{\begin{bmatrix} \mathbf{Q}_1(\mathbf{y}, \mathbf{y}) + \mathbf{Q}_2(\mathbf{y}, \mu) + \mathbf{Q}_3(\mu, \mu) \\ 0 \end{bmatrix}}_{\widetilde{\mathbf{Q}}(\widetilde{\mathbf{y}}, \widetilde{\mathbf{y}})}$$

Which is the same as in [Vizzaccaro et al. (2024)]. The parameter is treated as an **added** variable:

$$\widetilde{\mathbf{z}} = egin{bmatrix} \mathbf{z} \ \mu \end{bmatrix}$$

Already in **normal form:**

$$\mathbf{y} = \mathbf{W}(\widetilde{\mathbf{z}})$$

We consider problems of the form

$$\underbrace{\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}}_{\widetilde{\mathbf{B}}} \underbrace{\begin{bmatrix} \dot{\mathbf{y}} \\ \mu \end{bmatrix}}_{\widetilde{\mathbf{y}}} = \underbrace{\begin{bmatrix} \mathbf{A}_t & \mathbf{A}_0 \\ \mathbf{0} & 0 \end{bmatrix}}_{\widetilde{\mathbf{A}}_t} \underbrace{\begin{bmatrix} \mathbf{y} \\ \mu \end{bmatrix}}_{\widetilde{\mathbf{y}}} + \underbrace{\begin{bmatrix} \mathbf{Q}_1(\mathbf{y}, \mathbf{y}) + \mathbf{Q}_2(\mathbf{y}, \mu) + \mathbf{Q}_3(\mu, \mu) \\ 0 \end{bmatrix}}_{\widetilde{\mathbf{Q}}(\widetilde{\mathbf{y}}, \widetilde{\mathbf{y}})}$$

Which is the same as in [Vizzaccaro et al. (2024)]. The parameter is treated as an **added** variable:

$$\widetilde{\mathbf{z}} = egin{bmatrix} \mathbf{z} \ \mu \end{bmatrix}$$

Already in **normal form:**

$$\mathbf{y} = \mathbf{W}(\widetilde{\mathbf{z}})$$

And of trivial reduced dynamics:

$$\dot{\widetilde{\mathbf{z}}} = \mathbf{f}(\widetilde{\mathbf{z}}), \quad \text{with} \quad f_{d+1}(\widetilde{\mathbf{z}}) = 0$$

The parametrisation and reduced dynamics are expanded in polynomial form:

$$\mathbf{W}(\widetilde{\mathbf{z}}) = \sum_{p=1}^{o} \left[\mathbf{W}(\widetilde{\mathbf{z}}) \right]_{p} = \sum_{p=1}^{o} \sum_{k=1}^{m_{p}} \mathbf{W}^{(p,k)} \widetilde{\mathbf{z}}^{\boldsymbol{\alpha}(p,k)}$$

$$\mathbf{f}(\widetilde{\mathbf{z}}) = \sum_{p=1}^{o} \left[\mathbf{f}(\widetilde{\mathbf{z}}) \right]_{p} = \sum_{p=1}^{o} \sum_{k=1}^{m_{p}} \mathbf{f}^{(p,k)} \widetilde{\mathbf{z}}^{\boldsymbol{\alpha}(p,k)}$$

The parametrisation and reduced dynamics are expanded in polynomial form:

$$\mathbf{W}(\widetilde{\mathbf{z}}) = \sum_{p=1}^{o} \left[\mathbf{W}(\widetilde{\mathbf{z}}) \right]_{p} = \sum_{p=1}^{o} \sum_{k=1}^{m_{p}} \mathbf{W}^{(p,k)} \widetilde{\mathbf{z}}^{\alpha(p,k)}$$

$$\mathbf{f}(\widetilde{\mathbf{z}}) = \sum_{p=1}^{o} \left[\mathbf{f}(\widetilde{\mathbf{z}}) \right]_{p} = \sum_{p=1}^{o} \sum_{k=1}^{m_{p}} \mathbf{f}^{(p,k)} \widetilde{\mathbf{z}}^{\boldsymbol{\alpha}(p,k)}$$

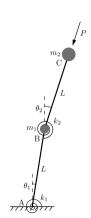
And for each monomial a homological equation is solved in order to find the unknown coefficients $\mathbf{W}^{(p,k)}$ and $\mathbf{f}^{(p,k)}$.

The equations of motion are [Luongo and D'Annibale (2015)]:

$$\mathbf{M}\ddot{oldsymbol{ heta}} + \mathbf{C}\dot{oldsymbol{ heta}} + (\mathbf{K} + \mathbf{K}_{oldsymbol{e}})\,oldsymbol{ heta} = \mathbf{F}_{nl}$$

with $\mathbf{C}=2\left(\xi_{m}\mathbf{M}+\xi_{k}\mathbf{K}\right)$ and

$$\mathbf{M} = L^2 \begin{bmatrix} m_1 + m_2 & m_2 \\ m_2 & m_2 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$
$$\mathbf{K_g} = PL \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{F}_{nl} = -\frac{PL}{6} \begin{bmatrix} (\theta_1 - \theta_2)^3 \\ 0 \end{bmatrix}, \quad \boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}.$$



The equations of motion are [Luongo and D'Annibale (2015)]:

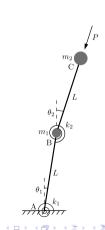
$$\mathbf{M}\ddot{oldsymbol{ heta}} + \mathbf{C}\dot{oldsymbol{ heta}} + (\mathbf{K} + \mathbf{K}_{oldsymbol{g}})\,oldsymbol{ heta} = \mathbf{F}_{nl}$$

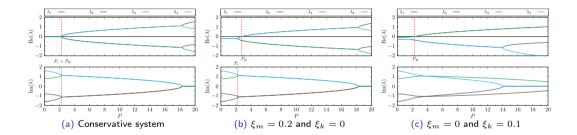
with $\mathbf{C} = 2 \left(\xi_m \mathbf{M} + \xi_k \mathbf{K} \right)$ and

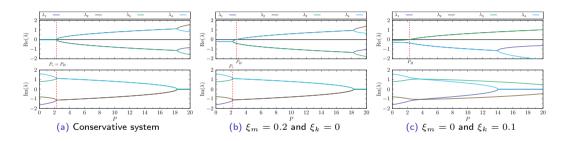
$$\mathbf{M} = L^2 \begin{bmatrix} m_1 + m_2 & m_2 \\ m_2 & m_2 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$
$$\mathbf{K_g} = PL \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{F}_{nl} = -\frac{PL}{6} \begin{bmatrix} (\theta_1 - \theta_2)^3 \\ 0 \end{bmatrix}, \quad \boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}.$$

The numerical values of the parameters are chosen as

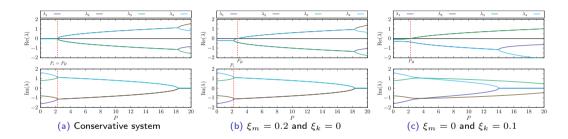
$$k_1 = \delta^2 k_2$$
, $m_1 = \gamma^2 m_2$, $k_2 = m_2 = 1$,
 $\delta^2 = \frac{41}{4}$, $\gamma^2 = \frac{25}{4}$.



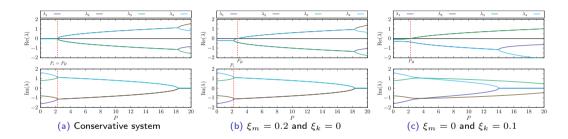




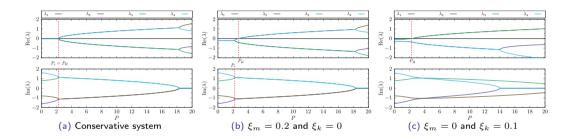
► Conservative system: two eigenfrequencies coalesce at the bifurcation.



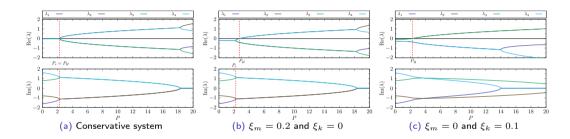
- ► Conservative system: two eigenfrequencies coalesce at the bifurcation.
- ▶ The center manifold is of dimension 4. A 1:1 resonance is verified.



- ► Conservative system: two eigenfrequencies coalesce at the bifurcation.
- ▶ The center manifold is of dimension 4. A 1:1 resonance is verified.
- Damped systems: existence of near-resonances.



- Conservative system: two eigenfrequencies coalesce at the bifurcation.
- ▶ The center manifold is of dimension 4. A 1:1 resonance is verified.
- ▶ Damped systems: existence of near-resonances.
- Our choice: keep two master modes (those in resonance) in the parametrisation.



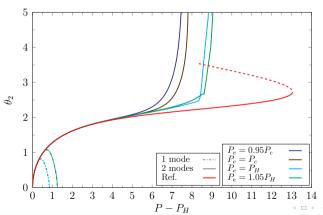
- Conservative system: two eigenfrequencies coalesce at the bifurcation.
- ▶ The center manifold is of dimension 4. A 1:1 resonance is verified.
- Damped systems: existence of near-resonances.
- ▶ Our choice: keep two master modes (those in resonance) in the parametrisation.
- ► Another choice: only keeping the unstable mode [Li and Wang (2024)].

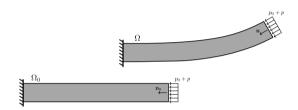
Bifurcation diagrams - Mass proportional damping

ightharpoonup Objective: construct a **single ROM**, at an expansion point P_e , and use it to trace the bifurcation diagram of the system.

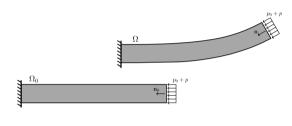
Bifurcation diagrams - Mass proportional damping

ightharpoonup Objective: construct a **single ROM**, at an expansion point P_e , and use it to trace the bifurcation diagram of the system.



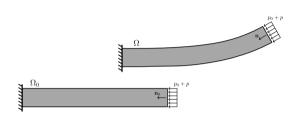


- ► Column subjected to a follower force
- Plane stress finite element model
- $ightharpoonup \sim 600$ degrees of freedom



$$\delta \mathcal{P}_{iner} - \delta \mathcal{P}_{int} = \delta \mathcal{P}_{ext}$$

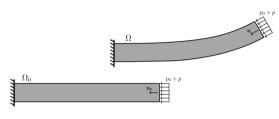
- ► Column subjected to a follower force
- ► Plane stress finite element model
- $ightharpoonup \sim 600$ degrees of freedom



$$\delta \mathcal{P}_{iner} - \delta \mathcal{P}_{int} = \delta \mathcal{P}_{ext}$$

- ► Column subjected to a follower force
- ▶ Plane stress finite element model
- $ightharpoonup \sim 600$ degrees of freedom

$$\delta \mathcal{P}_{ext} = \int_{\partial \Omega_0} \tilde{\mathbf{v}} \cdot (p_0 + p) \left(\mathbf{n}_0 + \frac{\mathbf{e}_3 \times \mathbf{u}_{,a}}{J_{s_0}} \right) ds_0$$

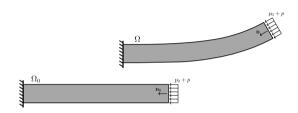


- Plane stress finite element model
- $ightharpoonup \sim 600$ degrees of freedom

$$\delta \mathcal{P}_{iner} - \delta \mathcal{P}_{int} = \delta \mathcal{P}_{ext}$$

$$\delta \mathcal{P}_{ext} = \int_{\partial \Omega_0} \tilde{\mathbf{v}} \cdot (p_0 + p) \left(\mathbf{n}_0 + \frac{\mathbf{e}_3 \times \mathbf{u}_{,a}}{J_{s_0}} \right) ds_0$$

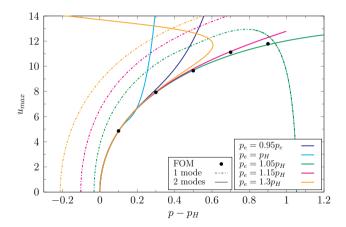
$$\begin{split} &\int_{\partial\Omega_0} \tilde{\mathbf{v}} \cdot \mathbf{n}_0 \, \mathrm{d}s_0 = \tilde{\mathbf{V}}^T \int_{\hat{\Omega}_e} \mathbf{N}^T \mathbf{E}_3 \mathbf{N}_{,a} \mathbf{X} \, \mathrm{d}a = \tilde{\mathbf{V}}^T \mathbf{R}_0^e \\ &\int_{\partial\Omega_0} \frac{\mathbf{e}_3 \times \mathbf{u}_{,a}}{J_{s_0}} \, \mathrm{d}s_0 = \tilde{\mathbf{V}}^T \left(\int_{\hat{\Omega}_e} \mathbf{N}^T \mathbf{E}_3 \mathbf{N}_{,a} \mathrm{d}a \right) \mathbf{U} = \tilde{\mathbf{V}}^T \mathbf{R}_u^e \mathbf{U} \end{split}$$



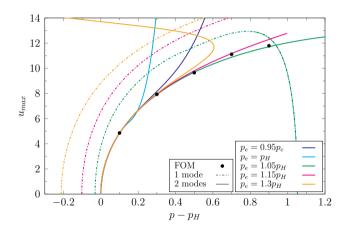
- ► Column subjected to a follower force
- Plane stress finite element model
- $ightharpoonup \sim 600$ degrees of freedom

$$\mathbf{M}\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}_t\mathbf{U} - p\mathbf{R}_t + \mathbf{G}_t(\mathbf{U}, \mathbf{U}) - p\mathbf{R}_u\mathbf{U} + \mathbf{H}(\mathbf{U}, \mathbf{U}, \mathbf{U}) = \mathbf{0}$$

For further details, see [Vizzaccaro et al. (2024); Stabile et al. (2025)].

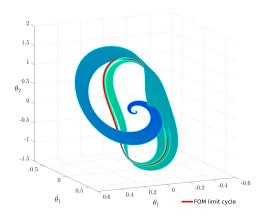


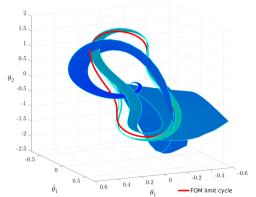
Beck's column



Parametrising the unstable manifold yields better results!

Phase space interpretation





Conclusion

▶ An approach for reduced-order modelling of parameter-dependent systems was shown.

Conclusion

- ▶ An approach for reduced-order modelling of parameter-dependent systems was shown.
- ▶ It is possible to trace bifurcation diagrams with ROMs constructed at a single parameter value.

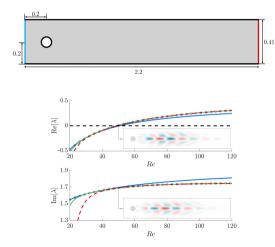
Conclusion

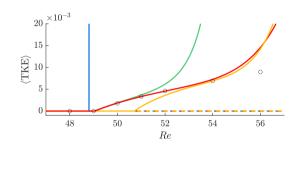
- ▶ An approach for reduced-order modelling of parameter-dependent systems was shown.
- ▶ It is possible to trace bifurcation diagrams with ROMs constructed at a single parameter value.
- ► The approach remains valid for a range of parameters considerably larger than the single mode strategy.

Conclusion

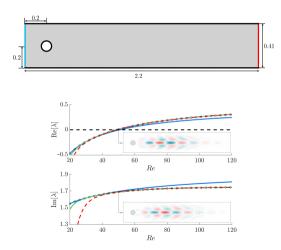
- ▶ An approach for reduced-order modelling of parameter-dependent systems was shown.
- ▶ It is possible to trace bifurcation diagrams with ROMs constructed at a single parameter value.
- ► The approach remains valid for a range of parameters considerably larger than the single mode strategy.
- Parametrising after the bifurcation yields better results.

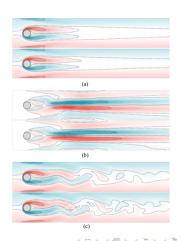
Bonus - Navier-Stokes equations [Colombo et al. (2025), submitted]





Bonus - Navier-Stokes equations [Colombo et al. (2025), submitted]





THANK YOU FOR YOUR ATTENTION

andre.de-figueiredo-stabile@ensta-paris.fr

References I

- X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds.
 I. Manifolds associated to non-resonant subspaces. *Indiana Univ. Math. J.*, 52(2):283–328, 2003a.
- X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds. II. Regularity with respect to parameters. *Indiana Univ. Math. J.*, 52(2):329–360, 2003b.
- X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds. III. Overview and applications. *J. Differential Equations*, 218(2):444–515, 2005.
- A. Colombo, A. Vizzaccaro, C. Touzé, A. de Figueiredo Stabile, L. Pastur, and A. Frangi. Reduced order modelling of hopf bifurcations for the navier-stokes equations through invariant manifolds. *Physical Review E*, submitted, 2025.
- A. Haro, M. Canadell, J.-L. Figueras, A. Luque, and J.-M. Mondelo. *The parameterization method for invariant manifolds. From rigorous results to effective computations.* Springer, Switzerland, 2016.

References II

- L. Jézéquel and C. H. Lamarque. Analysis of non-linear dynamical systems by the normal form theory. *Journal of Sound and Vibration*, 149(3):429–459, 1991.
- M. Li and L. Wang. Parametric model reduction for a cantilevered pipe conveying fluid via parameter-dependent center and unstable manifolds. *International Journal of Non-Linear Mechanics*, 160:104629, 2024. doi: https://doi.org/10.1016/j.ijnonlinmec.2023.104629.
- Angelo Luongo and Francesco D'Annibale. Linear and nonlinear damping effects on the stability of the ziegler column. In Mohamed Belhaq, editor, *Structural Nonlinear Dynamics and Diagnosis*, pages 335–352, Cham, 2015. Springer International Publishing. ISBN 978-3-319-19851-4.
- A. Opreni, G. Gobat, C. Touzé, and A. Frangi. Nonlinear model order reduction of resonant piezoelectric micro-actuators: an invariant manifold approach. *Computers and Structures*, 289:107154, 2023.
- S. W. Shaw and C. Pierre. Non-linear normal modes and invariant manifolds. *Journal of Sound and Vibration*, 150(1):170–173, 1991.

References III

- S. W. Shaw and C. Pierre. Normal modes for non-linear vibratory systems. *Journal of Sound and Vibration*, 164(1):85–124, 1993.
- S. W. Shaw and C. Pierre. Normal modes of vibration for non-linear continuous systems. *Journal of Sound and Vibration*, 169(3):85–124, 1994.
- A. de F. Stabile, A. Vizzaccaro, L. Salles, A. Colombo, A. Frangi, and C. Touzé. Reduced-order modelling of parameter-dependent systems with invariant manifolds: application to Hopf bifurcations in follower force problems. *International Journal of Nonlinear Mechanics*, 177: 105133, 2025. doi: https://doi.org/10.1016/j.ijnonlinmec.2025.105133.
- C. Touzé. A normal form approach for non-linear normal modes. Technical report, Publications du LMA, numéro 156, (ISSN: 1159-0947, ISBN: 2-909669-20-3), 2003.
- C. Touzé and M. Amabili. Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures. *Journal of Sound and Vibration*, 298(4-5):958–981, 2006.

References IV

- C. Touzé, O. Thomas, and A. Chaigne. Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. *Journal of Sound and Vibration*, 273 (1-2):77–101, 2004.
- A. Vizzaccaro, A. Givois, P. Longobardi, Y. Shen, J.-F. Deü, L. Salles, C. Touzé, and O. Thomas. Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements. *Computational Mechanics*, 66:1293–1319, 2020.
- A. Vizzaccaro, G. Gobat, A. Frangi, and C. Touzé. Direct parametrisation of invariant manifolds for non-autonomous forced systems including superharmonic resonances. *Nonlinear Dynamics*, 112:6255–6290, 2024.
- Alessandra Vizzaccaro, Yichang Shen, Loïc Salles, Jiří Blahoš, and Cyril Touzé. Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. *Computer Methods in Applied Mechanics and Engineering*, 384: 113957, 2021. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2021.113957. URL https://www.sciencedirect.com/science/article/pii/S0045782521002942.

References V

H. Ziegler. Die stabilitätskriterien der elastomechanik. *Ingenieur-Archiv*, 20(1):49–56, Jan 1952. ISSN 1432-0681. doi: 10.1007/BF00536796. URL https://doi.org/10.1007/BF00536796.

