
Introduction DPIM Follower forces References

The parametrisation method for invariant manifolds: application
to Hopf bifurcations in follower force problems

André de F. Stabile

Séminaires internes pôle mécanique
September 2025

The parametrisation method for invariant manifolds: application to Hopf bifurcations in follower force problems A. de F. Stabile 1 / 35



Introduction DPIM Follower forces References

Scope of this presentation

Nonlinear vibrating structures:
▶ Distributed smooth (geometric) nonlineari-

ties
▶ Large vibration amplitudes
▶ Reduced-order models (ROMs)
▶ Simulation-free (data-free) ROMs
▶ FEM models

Why reduce?
▶ Faster computations
▶ More interpretable models
▶ General results and possibility of analytical

solutions

[Opreni et al. (2023)]

[Vizzaccaro et al. (2021)]
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Some model-order reduction techniques

Linear approaches:
▶ Linear vibration modes
▶ Modal derivatives
▶ Dual modes
▶ Proper orthogonal decomposition (POD)
▶ Proper generalized decomposition (PGD)

Nonlinear approaches:
▶ Implicit condensation and expansion
▶ Quadratic manifold (with modal deriva-

tives)
▶ Nonlinear normal modes (center manifold,

normal forms, parametrisation method,
SSMs)

The idea is always to look for a projection
basis

Fully nonlinear relationship between the
master and slave coordinates
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Linear vibration modes - Geometric perspective

Consider a linear vibrating system
MÜ+KU = 0

Linear vibration modes are usually computed by

(K− ω2
sM)ϕϕϕs = 0

In order to reduce the model we gather some (how many?) of the modes in a matrix ΦΦΦ and
impose

U = ΦΦΦz

to transform the equations into
z̈+ΛΛΛ2z = 0
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Linear vibration modes - Geometric perspective

We will take an alternative (dynamical systems) approach:

Bẏ = Ay

with

y =

[
U
V

]
, A =

[
0 M

−K 0

]
, B =

[
M 0
0 M

]
where V = U̇ are auxiliary variables to write the system first-order form.

Then, the eigenproblem
becomes

(λsB−A)Ys = 0,

and the eigenvalues are complex conjugate.
Nice geometric interpretation: each pair of eigenvalues defines an invariant subspace

in phase space!
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Linear vibration modes - Geometric perspective

ü1 + ω2
1u1 = 0

ü2 + ω2
2u2 = 0
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Linear vibration modes - Nonlinear problems

What happens when we add nonlinearities?

Bẏ = Ay +Q(y,y)
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ü2 + ω
2
2u2 +

ω2
2

2

(
3u

2
2 + u

2
1

)
+ ω

2
1u1u2 +

ω2
1 + ω2

2

2
u2

(
u
2
1 + u

2
2

)
= 0

We fix ω1 = 1 and ω2 =
√
2
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Bẏ = Ay +Q(y,y) ⇒ ẏ = ΛΛΛy + q(y,y)
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Linear vibration modes - Nonlinear problems

‘
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An illustrative example - Clamped-clamped 3D FE beam [Vizzaccaro et al. (2020)]
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Nonlinear normal modes (NNMs) - Invariant manifolds in phase space

Can we find a nonlinear counterpart for the linear modes?

Yes, invariant manifolds!

Key properties:
▶ Invariance: trajectories keep on the manifold
▶ Linear tangency: they reduce to LNMs near the origin
▶ Exponentially attracting: trajectories of the full system rapidly converge to these objects

How to compute?
▶ Center manifold theory [Shaw and Pierre (1991, 1993, 1994)]

▶ Normal form technique [Jézéquel and Lamarque (1991); Touzé (2003); Touzé et al. (2004); Touzé and Amabili (2006)]

▶ Parametrisation method for invariant manifolds [Cabré et al. (2003a,b, 2005); Haro et al. (2016)]
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Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

We will consider mechanical systems of the form

MÜ+CU̇+KU+G(U,U) +H(U,U,U) = F(t)

but we treat first the autonomous case.This can be written in first order by choosing

y =

UV
R

 , A =

 0 M 0
−K C 0
0 0 I

 , B =

M 0 0
0 M 0
0 0 0


and a suitable Q(y,y). Note that the last equations are algebraic.

To compute the manifold we introduce new (normal) coordinates z

z ∈ Cd, y ∈ RD, d ≪ D
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Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

In order to compute the manifold we introduce its parametrisation and reduced dynamics

y = W(z)

ż = f(z)

To fulfill the invariance property they must verify the invariance equation

B∇zW(z)f(z) = AW(z)−Q(W(z),W(z))

Which is solved order-by-order ∀p ∈ {1, . . . , o}:

[B∇zW(z)f(z)]p = [AW(z)]p + [Q(W(z),W(z))]p.
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Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

We solve first the order 1 equation. We note that

[W(z)]1 = W(1)z

[f(z)]1 = f (1)z

And thus the homological equation becomes

BW(1)f (1) = AW(1)

To enforce tangency to the master eigenspace we choose

W(1) = Y

f (1) = ΛΛΛ

In what follows we also need to define the left eigenvalue problem:

X∗
s(λsB−A) = 0

The parametrisation method for invariant manifolds: application to Hopf bifurcations in follower force problems A. de F. Stabile 14 / 35
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Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

The homological equation at order p is

B[∇zW(z)f(z)]p = A[W(z)]p + [Q(z, z)]p

For monomial (p, k):

(σ(p,k)B−A)W(p,k) +
d∑

s=1

BYsf
(p,k)
s = R(p,k)

with the R(p,k) computed only from the previous orders and

σ(p,k) =
d∑

s=1

α(p, k)s · λs

Problem: too many unknowns!

The parametrisation method for invariant manifolds: application to Hopf bifurcations in follower force problems A. de F. Stabile 15 / 35
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Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

To find a solution, we project into the modal basis:

(σ(p,k) − λs)ξ
(p,k)
s + f (p,k)

s = S(p,k)
s

Either
▶ Set f (p,k)

s = S
(p,k)
s and ξ

(p,k)
s = 0. The monomial is resonant, and s ∈ R(p,k).

▶ Set f (p,k)
s = 0 and ξ

(p,k)
s =

S(p,k)
s

σ(p,k)−λs
. The monomial is not resonant, and s /∈ R(p,k).

Many styles of parametrisation are possible, with two main ones:
▶ Graph style - All monomials are chosen as resonant.
▶ CNF style - Only when σ(p,k) ≈ λs is a monomial resonant.

The condition ξ
(p,k)
s = 0 translates into physical space as

X∗
sBW(p,k) = 0
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Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

Finally, for each monomial a homological equationσ
(p,k)B−A BYR 0

X⋆
RB 0 0

0 0 I


W

(p,k)

f
(p,k)
R
f
(p,k)

�R

 =

R
(p,k)

0

0


is solved in order to find the unknown coefficients W(p,k) and f (p,k).
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Direct parametrisation of invariant manifolds [Vizzaccaro et al. (2024)]

Now, what happens for forced systems?

F(t) = Fc cosΩt+ Fs sinΩt = F̄ȳ

with
ȳ1,2 = e±iΩt

The full system can be written as[
B 0
0 B̄

]
︸ ︷︷ ︸

B̃

[
ẏ
˙̄y

]
︸︷︷︸

˙̃y

=

[
A F̄
0 Ā

]
︸ ︷︷ ︸

Ã

[
y
ȳ

]
︸︷︷︸
ỹ

+

[
Q(y,y)

0

]
︸ ︷︷ ︸

Q̃(ỹ,ỹ)

with

B̃ =

[
1 0
0 1

]
, Ã =

[
iΩ 0
0 −iΩ

]
.

The system can be treated as in the autonomous case!
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with
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This contribution

▶ Extend the parametrisation method in order to treat bifurcating systems.

▶ Inclusion of the control parameter as an added variable [Vizzaccaro et al. (2024); Li and Wang (2024)].

Outline of this part
▶ Inclusion of the bifurcation parameter
▶ Ziegler’s pendulum

▶ Linear stability analysis
▶ Master mode selection
▶ Results

▶ Beck’s column (FE model)
▶ Conclusions
▶ A similar example: NS equations
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Adding the bifurcation parameter

We consider problems of the form[
B 0
0 1

]
︸ ︷︷ ︸

B̃

˙[y
µ

]
︸︷︷︸

˙̃y

=

[
At A0

0 0

]
︸ ︷︷ ︸

Ãt

[
y
µ

]
︸︷︷︸
ỹ

+

[
Q1(y,y) +Q2(y, µ) +Q3(µ, µ)

0

]
︸ ︷︷ ︸

Q̃(ỹ,ỹ)

Which is the same as in [Vizzaccaro et al. (2024)].

The parameter is treated as an added
variable:

z̃ =

[
z
µ

]
Already in normal form:

y = W(z̃)

And of trivial reduced dynamics:
˙̃z = f(z̃), with fd+1(z̃) = 0
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Adding the bifurcation parameter

The parametrisation and reduced dynamics are expanded in polynomial form:

W(z̃) =

o∑
p=1

[W(z̃)]p =

o∑
p=1

mp∑
k=1

W(p,k)z̃α(p,k)

f(z̃) =

o∑
p=1

[f(z̃)]p =

o∑
p=1

mp∑
k=1

f (p,k)z̃α(p,k)

And for each monomial a homological equation is solved in order to find the unknown coefficients
W(p,k) and f (p,k).
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Ziegler’s pendulum [Ziegler (1952)]

The equations of motion are [Luongo and D’Annibale (2015)] :

Mθ̈ +Cθ̇ + (K+Kg)θ = Fnl

with C = 2 (ξmM+ ξkK) and

M = L2

[
m1 +m2 m2

m2 m2

]
, K =

[
k1 + k2 −k2
−k2 k2

]
Kg = PL

[
−1 1
0 0

]
, Fnl = −PL

6

[
(θ1 − θ2)

3

0

]
, θ =

[
θ1
θ2

]
.

The numerical values of the parameters are chosen as

k1 = δ2k2, m1 = γ2m2, k2 = m2 = 1,

δ2 =
41

4
, γ2 =

25

4
.
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Linear stability and master modes
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(a) Conservative system
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(b) ξm = 0.2 and ξk = 0
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(c) ξm = 0 and ξk = 0.1

▶ Conservative system: two eigenfrequencies coalesce at the bifurcation.
▶ The center manifold is of dimension 4. A 1:1 resonance is verified.
▶ Damped systems: existence of near-resonances.
▶ Our choice: keep two master modes (those in resonance) in the parametrisation.
▶ Another choice: only keeping the unstable mode [Li and Wang (2024)].
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(c) ξm = 0 and ξk = 0.1

▶ Conservative system: two eigenfrequencies coalesce at the bifurcation.
▶ The center manifold is of dimension 4. A 1:1 resonance is verified.
▶ Damped systems: existence of near-resonances.
▶ Our choice: keep two master modes (those in resonance) in the parametrisation.

▶ Another choice: only keeping the unstable mode [Li and Wang (2024)].
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Linear stability and master modes
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Bifurcation diagrams - Mass proportional damping

▶ Objective: construct a single ROM, at an expansion point Pe, and use it to trace the
bifurcation diagram of the system.
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Beck’s column

▶ Column subjected to a follower force
▶ Plane stress finite element model
▶ ∼ 600 degrees of freedom
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Beck’s column

▶ Column subjected to a follower force
▶ Plane stress finite element model
▶ ∼ 600 degrees of freedom

δPiner − δPint = δPext

δPext =

∫
∂Ω0

ṽ · (p0 + p)

(
n0 +

e3 × u,a

Js0

)
ds0

∫
∂Ω0

ṽ · n0 ds0 = ṼT

∫
Ω̂e

NTE3N,aX da = ṼTRe
0∫

∂Ω0

e3 × u,a

Js0

ds0 = ṼT

(∫
Ω̂e

NTE3N,ada
)
U = ṼTRe

uU

The parametrisation method for invariant manifolds: application to Hopf bifurcations in follower force problems A. de F. Stabile 25 / 35



Introduction DPIM Follower forces References

Beck’s column

▶ Column subjected to a follower force
▶ Plane stress finite element model
▶ ∼ 600 degrees of freedom

δPiner − δPint = δPext δPext =

∫
∂Ω0
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Beck’s column

▶ Column subjected to a follower force
▶ Plane stress finite element model
▶ ∼ 600 degrees of freedom

MÜ+CU̇+KtU− pRt +Gt(U,U)− pRuU+H(U,U,U) = 0

For further details, see [Vizzaccaro et al. (2024); Stabile et al. (2025)].
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Beck’s column
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Parametrising the unstable manifold yields better results!
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Phase space interpretation
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Conclusion

▶ An approach for reduced-order modelling of parameter-dependent systems was shown.

▶ It is possible to trace bifurcation diagrams with ROMs constructed at a single parameter
value.

▶ The approach remains valid for a range of parameters considerably larger than the single
mode strategy.

▶ Parametrising after the bifurcation yields better results.
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Bonus - Navier-Stokes equations [Colombo et al. (2025), submitted]
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Bonus - Navier-Stokes equations [Colombo et al. (2025), submitted]

5

(a) (b)

(c) (d)

(e) (f)

FIG. 4: Full field solution of the FOM (top) and ROM (bottom) for different scenarios. (a)-(c)-(e): mean flow, shift mode
and reconstruction at the same time instance for Re = 52. (b)-(d)-(f): Re = 54.
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FIG. 5: Bifurcation diagram of the average turbulent
kinetic energy with respect to the Reynolds number: FOM
(◦); DPIM with Re0 = 20 ( ), Re0 = Rec ( ) and Re0 = 70
( ). Only the latter two are able to correctly predict the
branch of limit cycles, with different convergence ranges.
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