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1. Introduction
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General Context

Additive Manufacturing: cost-efficient for producing complex components at low
production volumes [Levy et al., 2003].

General context at CEA
Part of an R&D program to evaluate additive manufacturing processes and their
application to the nuclear industry.

Additive Manufacturing technologies:
• Powder Bed: most often Laser-Powder Bed Fusion (L-PBF);
• Directed Energy Deposition (DED): shape of material ⇒ powder or wire;

energy source ⇒ laser, electrical arc or electron beam.
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Process selection
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Adapted from [Mukherjee and DebRoy, 2019b].

Wire-DED less studied/industrialized.

Studied processes at CEA/LTA:
WAAM (Wire Arc Additive Manufacturing)

WLAM (Wire Laser Additive Manufacturing)

Energy
source

Wire feed

Deposition layers Substrate
Adapted from [Frazier, 2014].
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Potential applications in the nuclear industry

Steam
generator

Primary
pump

Reactor
vessel

Reactor and associated cooling pump.

Adapted from [IRSN, 2016].

→ Size ∼ 1 − 10 m.

Reactor cooling pump impeller, WAAM.

From [Framatome].
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Applications-related constraints

WAAM and WLAM processes

WLAM: metre-sized components, better surface finish compared to WAAM.
⇒ Objectives for the CEA: characterization and comparison of both processes.

Material: AISI 316L austenitic stainless steel → Material of interest to the nuclear
industry and model material for additive manufacturing.

Mechanical properties: ensure comparable properties than those of components
produced by conventional processes.

Geometry: complex components composed of thin (walls) and thick (tiles) zones.

Manufacturing defects: thermal and mechanical fields monitoring.
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Thesis objectives

Objectives

Master the microstructure and geometry of simple 316L steel components
manufactured by WAAM and WLAM, and identify construction conditions for the
production of full-size components.

1. What are the parameters for manufacturing defect-free components?
2. What are the differences in properties and microstructure between WAAM and

WLAM components, and between walls and blocks?
3. Can a finite element model be developed to simulate both processes?
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Approach

1. Manufacturing simple components using WAAM and WLAM processes.
• Determine manufacturing parameters (single beads analysis).
• Avoid manufacturing defects (geometry, microstructure).

2. Characterizing the manufactured components.
• Determine and compare the mechanical properties of the components.
• Establish the microstructure specificities (walls vs tiles; WAAM vs WLAM).

3. Modeling of the processes.
• Predict relevant fields in manufacturing (temperature, stress, strain).
• Contribute to the control of the processes.
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2. Processing conditions
Objective

What are the parameters for manufacturing defect-free components?
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WAAM and WLAM platforms at CEA/LTA

WAAM - Tungsten Inert Gas (TIG) welding.
WLAM - Coaxial laser.

WLAM WAAM

Wire
feeder

Inerting
system

Coaxial
laser

Optical system
for splitting
and refocusing
the laser Wire

feeder

Inerting
system
Tungsten
electrode

Wire + Laser + Blown Argon Wire + Arc + Blown Argon
Surface state of

100 mm-high wall
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Influence of manufacturing parameters on geometry

Geometry: width, w , height, h, depth into substrate, p.

• Deposition speed, s ;
• wire feed speed, vw ;
• power of the heat source, Qexp.

Manufacturing parameters influencing the:
• linear energy, El ∝ Qexp

s ;
• transverse cross-section, S ∝ vw

s ;

• volume energy, Ev ∝ Qexp

vw
;

• deposition rate, drate ∝ vw .

WAAM

WLAM
BD

SD
BD: Building Direction; SD: Scanning Direction
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Selected process parameters
Measurement of the geometrical dimensions of regular single-beads and selection.

1 mm

BD

SD

W
LA

M
W

A
A
M

1 mm

1 2

1 2

WLAM Qexp s vw
(W) (mm.min−1)

1 2400 800 2000
2 3500 1000 2800

WAAM Qexp s vw
(W) (mm.min−1)

1 2400 200 2500
2 3000 200 3750

WLAM-1 et WAAM-2 used for
component manufacturing.
Deposition rate et repeatability.
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Manufacturing of single-bead walls and tiles

Other parameters to calibrate during the manufacturing of components:
deposition strategy, interlayer cooling times.

20-layer single-bead walls 6×20-layer tiles

50 mm

50 mm
BD

SD

W
LA

M
W

A
A
M

50 mm

50 mm
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Partial conclusion

• A set of parameters has been identified for single-bead wall manufacturing, taking
into account geometrical considerations and maximization of the deposition rate.

• Improper control of the deposition strategy and interlayer cooling times leads to
macroscopic deformations in the component.

• The width of the single beads is 3 times larger for WAAM than for WLAM.
• Differences in the shapes of the melt pools → WAAM: predominance of fluid

effects.
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2. Microstructure and properties
Objective

What are the differences in properties and microstructure between WAAM and WLAM
components, and between walls and blocks?
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Chemical composition

316L austenitic stainless steel
(wt.%) Cr Ni Mo Mn C N O S
Wire 19.20 12.66 2.88 1.78 0.016 0.045 <0.005 0.007

WAAM 18.96 12.50 2.84 1.80 0.014 0.048 0.025 0.007
WLAM 18.40 12.50 2.58 1.35 0.009 0.049 0.12 0.013

Chemical composition (wt.%) (ICP-AES and elementary analysis)

Vaporization of chemical elements during the
melting of the wire.

External contaminations during manufacturing.

Inclusions in the manufactured components.
⇒ Importance of the inerting atmosphere.

BD

SD 100 µm

Oxides in the wall (WLAM).
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⇒ 3.1. Single-bead walls
3.2. Tiles
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Mechanical properties
WLAM,
Proj. BD

WAAM,
Proj.BD

Nominal strain (-)
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[001] [011]

fcc

V L

Anisotropy in WLAM; effect of texture and columnar grains.

Requirements for wrought 316L: yield stress: >170 MPa ;
tensile strenght: >450 MPa ; ultimate strain: >0.40.

From [ASTM A 473-15].
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Microstructure of single-bead walls
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Microstructure of single-bead walls

[001] [011]

[111]

Au
ste

nit
e,

fcc

BD

SD

Thermal
gradient

Melted
zone

Substrate

Proj. BD

EBSD orientation map of epitaxy in WLAM wall

Thermal gradient:
103 − 104 K/m and ∥ BD.
→ columnar solidification.

Epitaxy: crystal growth with the
orientation of already solidified
grains.

Growth competition:
⟨001⟩∥ thermal gradient
is the preferential orientation
for cubic crystals.
→ Texture
Références : [Mukherjee and DebRoy, 2019a],
[Peyre and Charkaluk, 2022]
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Solidification structure
Ferrite rate (ferritescope) → WAAM: 8-9%, WLAM: 5-6%

BD

SD

WLAM WAAM

Austenite,�fcc Ferrite,�bcc
Pseudo-3D EBSD maps of phase composition in single-bead walls

Vermicular ferrite along with the dendritic pattern. → Formed during solidification.
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Microstructure - solidification cooling speed relationship

Solidification

2 x PDAS

2 x SDAS

WAAM WLAM

BD

SD

PDAS ∼ 80 × Ṫ−0.33

SDAS ∼ 25 × Ṫ−0.28

From [Katayama and Matsunawa, 1984].

WAAM → Ṫ ∼ 100 K/s
WLAM → Ṫ ∼ 1 000 K/s
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3.1. Single-bead walls
⇒ 3.2. Tiles
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Microstructure of multilayer tiles

Thinner and less elongated grains compared to single-bead walls.
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Microstructural variations

Tiles vs single-bead walls: different textures and grains elongation direction.

WAAM & WLAM WAAM WLAM

BD

SD

Single-bead walls Multilayer tiles
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Partial conclusion

Single-bead walls:
• Slight anisotropy of the single-bead walls manufactured by WLAM.
• Tensile properties satisfying the industrial requirements for wrought 316L.
• Elongated and textured grains along ⟨001⟩∥ BD → thermal gradient direction.

• Cooling rates at solidification Ṫ : WAAM → 100 °C/s; WLAM → 1000 °C/s.
• The variations between Ṫ only has a small impact on the mechanical properties.

Multilayer tiles:
• Smaller grains dimension and elongation compared to single-bead walls.
• Two predomining textures: ⟨001⟩∥ BD and ⟨011⟩∥ BD.
• Microstructural variations between tiles manufactured with WLAM and WLAM.
→ Differences in the shapes of the melt pools.
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4. Finite Element Modeling
Objective

Can a finite element model be developed to simulate both processes?
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⇒ 4.1. Implementation of the modeling
4.2. Applications
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Implementation of the modeling

Finite element software:

Cast3M

Reproduction of the experimental dimensions.
Clamping of the substrate to the table: springs.

Modeling of the deposition: finite elements addition.

SD

BD

WAAM, comparison of numerical mesh and as-built geometry. Finite elements addition.
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Implementation of the modeling

Parameters for 316L: temperature dependency. From [Depradeux, 2004].

Thermal modeling: conduction, convection, radiation.
Heat source: transverse Gauss volume distribution.

Mechanical modeling: isotropic hardening, no hardening if T > 1000 °C.

1450
1300
1150
1000
850
700
550
400
250
100

WAAM, temperature (°C)

500
450
400
350
300
250
200
150
100
50
0

WAAM, von Mises stress (MPa)
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Model calibration

Thermocouples-based calibration at 2, 4 and 6 mm from the manufactured walls.

time (s) time (s)

Te
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tu
re

 (
°C

)

0 50 100 150 200 250 300 0 50 100 150
0

100

200

300

400
500 200

150

100

50

0

Experimental
Numerical
Layer 1
Layer 10
Layer 20

WAAM WLAM

Measured temperature at 4 mm from the walls, 1st , 10th and 20th deposited layers.

Adjusted parameters: convection coefficients, efficiencies of the energy sources, heat
sources distribution.
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Model calibration

Efficiency coefficients → WAAM: 90%; WLAM: 46%.
Effiency of GTA welding: 77-90%. From [Collings et al., 1979].

Effiency of laser Nd:YAG welding: 38-55%. From [Tadamalle et al., 2014].

Convection coefficient with ambient air: 10 W.m−2.K−1.
Heat losses throught the table: 300 W.m−2.K−1.

Gauss radius in the manufacturing direction → 0.5 mm.
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Experimental validation

Accurate reproduction of the temperature field.
→ Allows for qualitative estimation of thermal gradients around the melted zone.

Experimental

Numerical

Experimental

Numerical

1450
1300
1200
1100
1000
900
800
700
600
500
400
300 10 mm10 mm

WLAM WAAM

SD

BD

SD

BD
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4.1. Implementation of the modeling
⇒ 4.2. Applications
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Interlayer cooling time control
Heat accumulation → Geometrical defects.

Excessively long cooling time → Productivity losses.

time (s)
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700
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0
0 200 400 600 800 1000

time (s)
0 200 400 600 800 1000

Num. prediction
Num. minimal Num. prediction

Num. minimaExp. minima

Maximal temperature reached in the wall manufactured by WLAM.
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Solidification cooling rate estimation

1450
1250
1050
850
650
450
250
50

WAAM

WLAM
SD

BD

Thermal
gradient
G

Solidification
speed
V

WLAM et WAAM, temperature (°C), mesh of the fusion isotherm.

Solidification cooling rate: Ṫ = G × V .

Thesis defense - D. ARTIÈRES - April 11, 2025 36



Introduction Processing Microstructure & Properties Numerical modeling Conclusions

Solidification cooling rate control

Couche WLAM WAAM
Num. Exp. Num. Exp.

1 1800 4000 240 800
10 550 3000 140 120
20 400 1100 110 300
Solidification cooling rates, WAAM et WLAM

Uncontrolled interlayer cooling time
→ Heat accumulation, variations in Ṫ , variations of the size of dendrites.

Firsts deposited layers
→ Heat conduction throught the substrate.
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Partial conclusion

The developed numerical model allowed for:
• reproducing the thermal and mechanical fields during manufacturing;
• qualitatively estimating the solidification cooling rate evolution;
• determining the interlayer cooling times leading to homogeneous cooling in the

successively deposited layers.
A single model developed for two processes with different scales and physics..
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5. Conclusion and perspectives
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Conclusions

• What are the parameters for manufacturing defect-free components?

1. WLAM: 3 times thinner deposited layers (3 mm vs 10 mm).
2. Too small interlayer cooling time → macroscopic distortions.

• What are the differences in properties and microstructure between WAAM and
WLAM components, and between walls and blocks?

1. WAAM & WLAM single-bead walls: tensile properties comparable to wrought 316L.
2. WLAM single-bead wall: slight anisotropy of tensile properties.
3. WAAM single-bead wall: higher ferrite fraction (8-9% versus 5-6% with WLAM).
4. 10 times faster solidification cooling rate in the single-bead wall achieved by WLAM.
5. Influences the dendrite size but not the tensile properties.
6. Microstructure of thick zones (tiles) different from that of thin sections (walls).
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Conclusions

• Can a finite element model be developed to simulate both processes?

1. Satisfactory experimental comparison after thermal calibration.
2. Calibrated parameters: heat losses, distribution and efficiency of the heat source.
3. Selection of the deposition strategy: avoid heat accumulation.
4. Estimation of the minimum interlayer cooling time to ensure homogeneous cooling.
5. Control of the solidification cooling rate.
6. Prevention of microstructural defects: σ-phase formation.
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Perspectives

Short term perspectives
1. Determine the tensile properties of tiles.
2. Complete the mechanical characterization of the walls.
3. Characterize the properties of the components after heat treatment.

Long term perspectives
1. Study the manufacturing of more complex geometries: deposition strategies for

overlaps, crossings, thickness transitions, etc.
2. Study the implementation of processes for other materials of interest.
3. Adapt the calculation tool to industrial needs: simulation based on manufacturing

data and simplification of calculation methods to simulate larger parts.
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